Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 1.1.15 ($(a_1a_2\cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_1^{-1}$)

Exercise 1.1.15 ($(a_1a_2\cdots a_n)^{-1} = a_n^{-1} a_{n-1}^{-1} \cdots a_1^{-1}$)

Prove that ( a 1 a 2 a n ) 1 = a n 1 a n 1 1 a 1 1 for all a 1 , a 2 , , a n G .

Answers

Proof. We define the proposition 𝒫 ( n ) by

𝒫 ( n ) ( a 1 , a 2 , , a n ) G n , ( a 1 a 2 a n ) 1 = a n 1 a n 1 1 a 1 1 .

  • For all a 1 G , a 1 1 = a 1 1 , so 𝒫 ( 1 ) is true.
  • Suppose that 𝒫 ( n ) is true for some positive integer n .

    Let ( a 1 , a 2 , , a n , a n + 1 ) G n + 1 . Then

    ( a 1 a 2 a n a n + 1 ) 1 = a n + 1 1 ( a 1 a 2 a n ) 1 ( by Proposition 1) = a n + 1 1 ( a n 1 a n 1 1 a 1 1 ) ( by induction hypothesis) = a n + 1 1 a n 1 a n 1 1 a 1 1 ,

    so 𝒫 ( n + 1 ) is true.

  • The induction is done, which proves that for all n + and for all a 1 , a 2 , , a n in G ,

    ( a 1 a 2 a n ) 1 = a n 1 a n 1 1 a 1 1 .

User profile picture
2026-01-07 12:11
Comments