Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.1.16 (Subgroup of upper triangular matrices in $\mathrm{GL}_n(F)$)

Exercise 2.1.16 (Subgroup of upper triangular matrices in $\mathrm{GL}_n(F)$)

Let n + and let F be a field. Prove that the set { ( a ij ) GL n ( F ) a ij = 0  for all  i > j } is a subgroup of GL n ( F ) (called the group of upper triangular matrices ).

Answers

Proof. Let

G = { ( a ij ) ( i , j ) [ [ 1 , n ] ] 2 GL n ( F ) ( i , j ) [ [ 1 , n ] ] 2 , a ij = 0 }

be the set of upper triangular matrices in GL n ( F ) .

  • G GL n ( F ) by definition. Let I n = ( e ij ) ( i , j ) [ [ 1 , n ] ] 2 defined by e ij = 1 if i = j and e ij = 0 if i j . Then I n G , so G .
  • Let A = ( a ij ) ( i , j ) [ [ 1 , n ] ] 2 , B = ( b ij ) ( i , j ) [ [ 1 , n ] ] 2 be elements of G .

    Then a ij = b ij = 0 for all i > j .

    Put C = AB GL n ( F ) , where C = ( c ij ) ( i , j ) [ [ 1 , n ] ] 2 . By definition of the product, for all ( i , k ) [ [ 1 , n ] ] 2 ,

    c ik = j = 1 n a ij b jk

    Suppose that i > k . Then i > j or j > k , otherwise i j and j k , so i k .

    • If i > j , then a ij = 0 , thus a ij b jk = 0 ,
    • If j > k then b jk = 0 thus a ij b jk = 0 .

    So a ij b jk = 0 is true for every j [ [ 1 , n ] ] . Hence

    ( i , k ) [ [ 1 , n ] ] 2 , i > k c ik = 0 .

    This shows that C = AB G .

  • (For the stability by inverses, we can use minors and cofactors, but it is more easy to reason with the associate linear maps.)

    Let A = ( a ij ) ( i , j ) [ [ 1 , n ] ] 2 G GL n ( F ) .

    Let f : F n F n be the linear mapping such that ( f ) = A , where = ( e 1 , e 2 , , e n ) is the canonical basis of F n .

    Since A G , f ( e j ) = i = 1 n a ij e i = i = 1 j a ij e i , because i > j a ij = 0 . Therefore

    f ( e j ) e 1 , e 2 , , e j ( 1 j n ) .

    Hence

    f ( e 1 ) , f ( e 2 ) , , f ( e j ) e 1 , e 2 , e j ( 1 j n ) .

    Since f is a linear automorphism f ( e 1 ) , f ( e 2 ) , , f ( e j ) are linearly independent, therefore

    dim F f ( e 1 ) , f ( e 2 ) , , f ( e j ) = j = dim F e 1 , e 2 , e j .

    This shows that

    f ( e 1 ) , f ( e 2 ) , , f ( e j ) = e 1 , e 2 , e j ( 1 j n ) .

    Hence e j f ( e 1 ) , f ( e 2 ) , , f ( e j ) , so e j = λ 1 f ( e 1 ) + λ 2 f ( e 2 ) + + λ j f ( e j ) for some scalars λ 1 , λ 2 , , λ j F . Since f 1 is linear, f 1 ( e j ) = λ 1 e 1 + λ 2 e 2 + + λ j e j , so

    f 1 ( e j ) e 1 , e 2 , , e j ( 1 j n ) .

    This proves that A 1 = ( f 1 ) is upper triangular, i.e. A 1 G .

In conclusion, the set G of upper triangular matrix in GL n ( F ) is a subgroup of GL n ( F ) . □

User profile picture
2025-10-09 10:14
Comments