Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.1.17 (Subgroups of $\mathrm{GL}_n(F)$)

Exercise 2.1.17 (Subgroups of $\mathrm{GL}_n(F)$)

Let n + and let F be a field. Prove that the set { ( a ij ) GL n ( F ) a ij = 0  for all  i > j ,  and  a ii = 1  for all  i } is a subgroup of GL n ( F ) .

Answers

Proof. Put

H = { ( a ij ) ( i , j ) [ [ 1 , n ] ] 2 GL n ( F ) ( i , j ) [ [ 1 , n ] ] 2 , a ij = 0  and  i [ [ 1 , n ] ] , a ii = 1 } .

  • H GL n ( F ) by definition, and I n H , so H .
  • Let A = ( a ij ) ( i , j ) [ [ 1 , n ] ] 2 , B = ( b ij ) ( i , j ) [ [ 1 , n ] ] 2 be elements of G .

    Then a ij = b ij = 0 for all i > j , and a ii = b ii = 1 for all i .

    Put C = AB GL n ( F ) , where C = ( c ij ) ( i , j ) [ [ 1 , n ] ] 2 . By Exercice 16, C is an upper triangular matrix, so for all ( i , j ) [ [ 1 , n ] ] 2 ,

    i > j c ij = 0 .

    Suppose now that i = j . Then

    c ii = j = 1 n a ij b ji .

    Since a i j = 0 if i > j and b ji = 0 if j > i , then a ij b ji for all ( i , j ) [ [ 1 , n ] ] 2 such that i j . Therefore

    c ii = a ii b ii = 1 .

    This shows that C = AB H .

  • Let A = ( a ij ) ( i , j ) [ [ 1 , n ] ] 2 H GL n ( F ) , and A 1 = ( d ij ) ( i , j ) [ [ 1 , n ] ] 2 .

    By Exercise 16, A 1 is an upper triangular matrix, so for all ( i , j ) [ [ 1 , n ] ] 2 ,

    i > j d ij = 0 .

    Since a ii = 1 for all i , det ( A ) = i = 1 n a ii = 1 .

    For every i [ [ 1 , n ] ] , the cofactor c ii is given by c ii = ( 1 ) i + i = m ii , where m ii is the corresponding minor, and d ii = ( 1 det ( A ) ) c ii = c ii , so

    d ii = c ii = m ii = | a 1 , 1 a 1 , i 1 a 1 , i + 1 a 1 , n 0 a i 1 , i 1 a i 1 , i + 1 a i 1 , n 0 0 a i + 1 , i + 1 a i + 1 , n 0 0 a n , n | = a 1 , 1 a i 1 , i 1 a i + 1 , i + 1 a n , n = k [ [ 1 , n ] ] , k i a kk = 1 .

    Therefore A 1 H .

In conclusion, H = { ( a ij ) ( i , j ) [ [ 1 , n ] ] 2 GL n ( F ) ( i , j ) [ [ 1 , n ] ] 2 , a ij = 0  and  i [ [ 1 , n ] ] , a ii = 1 } is a subgroup of GL n ( F ) . □

User profile picture
2025-10-10 09:11
Comments