Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.1.9 (Special linear group)

Exercise 2.1.9 (Special linear group)

Let G = GL n ( K ) , where F is any field. Define

SL n ( F ) = { A GL n ( F ) det ( A ) = 1 }

(called the special linear group). Prove that SL n ( F ) GL n ( F ) .

Answers

Proof.

  • SL n ( F ) GL n ( K ) and det ( I n ) = 1 , thus I n SL n ( F ) , so SL n ( F ) .
  • If A , B SL n ( F ) , then det ( A ) = det ( B ) = 1 , thus det ( A B 1 ) = det ( A ) det ( B ) = 1 , thus A B 1 SL n ( F ) .

SL n ( F ) is a subgroup of GL n ( F ) . □

User profile picture
2025-10-08 09:35
Comments