Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.2.12 (Action of $S_4$ on $\mathbb{Z}[x_1,x_2,x_3,x_4]$ and some stabilizers)

Exercise 2.2.12 (Action of $S_4$ on $\mathbb{Z}[x_1,x_2,x_3,x_4]$ and some stabilizers)

Let R be the set of all polynomials with integer coefficients in the independent variables x 1 , x 2 , x 3 , x 4 i.e., the members of R are finite sums of elements of the form a x 1 r 1 x 2 r 2 x 3 r 3 x 4 r 4 , where a is any integer and r 1 , , r 4 are nonnegative integers. For example

12 x 1 5 x 2 7 x 4 18 x 2 3 x 3 + 11 x 1 6 x 2 x 3 3 x 4 23 (∗)

is a typical element of R . Each σ S 4 gives a permutation of { x 1 , , x 4 } by defining σ x i = x σ ( i ) . This may be extended to a map from R to R by defining

σ p ( x 1 , x 2 , x 3 , x 4 ) = p ( x σ ( 1 ) , x σ ( 2 ) , x σ ( 3 ) , x σ ( 4 ) ) ,

for all p ( x 1 , x 2 , x 3 , x 4 ) R (i.e., σ simply permutes the indices of the variables). For example, if σ = ( 1 2 ) ( 3 4 ) and p ( x 1 , , x 4 ) is the polynomial in (∗) above, then

σ p ( x 1 , x 2 , x 3 , x 4 ) = 12 x 2 5 x 1 7 x 3 18 x 1 3 x 4 + 11 x 2 6 x 1 x 4 3 x 3 23 = 12 x 1 7 x 2 5 x 3 18 x 1 3 x 4 + 11 x 1 x 2 6 x 3 23 x 4 3 .
(a)
Let p = p ( x 1 , x 2 , x 3 , x 4 ) be the polynomial in (∗) above, let σ = ( 1 2 3 4 ) and let τ = ( 1 2 3 ) . Compute σ p , τ ( σ p ) , and ( σ τ ) p .
(b)
Prove that these definitions give a (left) group action of S 4 on R .
(c)
Exhibit all permutations in S 4 that stabilize x 4 and prove that they form a subgroup isomorphic to S 3 .
(d)
Exhibit all permutations in S 4 that stabilize the element x 1 + x 2 and prove that they form an abelian subgroup of order 4 .
(e)
Exhibit all permutations in S 4 that stabilize the element x 1 x 2 + x 3 x 4 and prove that they form a subgroup isomorphic to the dihedral group of order 8 .
(f)
Show that the permutations in S 4 that stabilize the element ( x 1 + x 2 ) ( x 3 + x 4 ) are exactly the same as those found in part (e). (The two polynomials appearing in parts (e) and (f) and the subgroup that stabilizes them will play an important role in the study of roots of quartic equations in Section 14.6.)

Answers

(The Solverer Latex compiler has sometimes some difficulties with double indexation: the reader will correct himself.)

Proof. Consider the ring R = [ x 1 , x 2 , x 3 , x 4 ] , and the mapping

φ { S 4 × R R ( σ , p ) σ p ( x 1 , x 2 , x 3 , x 4 ) = p ( x σ ( 1 ) , x σ ( 2 ) , x σ ( 3 ) , x σ ( 4 ) ) .

(a)
If σ = ( 1 2 3 4 ) and τ = ( 1 2 3 ) , then σ τ = ( 1 3 4 2 ) (we compose from right to left). Then σ p = 12 x 1 x 2 5 x 3 7 18 x 3 4 x 4 + 11 x 1 23 x 2 6 x 3 x 4 3 , τ ( σ p ) = 12 x 1 7 x 2 x 3 5 18 x 1 4 x 4 + 11 x 1 x 2 23 x 3 6 x 4 7 , ( σ τ ) p = 12 x 3 5 x 1 7 x 2 18 x 1 3 x 4 + 11 x 3 6 x 1 x 4 3 x 2 23 = 12 x 1 7 x 2 x 3 5 18 x 1 4 x 4 + 11 x 1 x 2 23 x 3 6 x 4 3 .

Therefore τ ( σ p ) = ( σ τ ) p .

(b)
We generalize this example. First 1 p = p . For all σ , τ in S 4 , if j = τ ( i ) then σ x τ ( i ) = σ x j = x σ ( j ) = x σ ( τ ( i ) ) , therefore σ ( τ x i ) = σ x τ ( i ) = x σ ( τ ( i ) ) = x ( στ ) ( i ) = ( στ ) ( x i ) ( i = 1 , 2 , 3 , 4 ) . (1) 

By definition

σ p ( x 1 , x 2 , x 3 , x 4 ) = p ( x σ ( 1 ) , x σ ( 2 ) , x σ ( 3 ) , x σ ( 4 ) ) ,

then

σ p ( x 1 , x 2 , x 3 , x 4 ) = p ( σ x 1 , σ x 2 , σ x 3 , σ x 4 ) . (2)

Therefore

σ ( τ p ) = σ ( τ p ( x 1 , x 2 , x 3 , x 4 ) ) = σ p ( τ x 1 , τ x 2 , τ x 3 , τ x 4 ) (by (2)) = p ( σ ( τ x 1 ) , σ ( τ x 2 ) , σ ( τ x 3 ) , σ ( τ x 4 ) ) (by (2)) = p ( ( στ ) x 1 , ( στ ) x 2 , ( στ ) x 3 , ( στ ) x 4 ) (by (1)) = ( στ ) p ( x 1 , x 2 , x 3 , x 4 ) (by (2)) = ( στ ) p .

So φ is a left action of S 4 on R

(c)
Let G denote the group S 4 .

Note that σ S 4 stabilizes x 4 if and only if x 4 = σ x 4 = x σ ( 4 ) , if and only if 4 = σ ( 4 ) , i.e., σ G 4 , where G 4 is the stabilizer of 4 for the action of S 4 on { 1 , 2 , 3 , 4 } . So the stabilizer G x 4 of x 4 is G x 4 = G 4

We proved in Exercise 8 that

φ { G 4 S [ [ 1 , 3 ] ] = S 3 σ σ | [ [ 1 , 3 ] ] ,

is an isomorphism. So

G x 4 = G 4 = { ( ) , ( 1 2 ) , ( 1 3 ) , ( 2 3 ) , ( 1 2 3 ) , ( 1 3 2 ) } S 4

is isomorphic to S 3 .

(d)
Let G x 1 + x 2 be the stabilizer of x 1 + x 2 for the action φ . Then σ G x 1 + x 2 σ ( x 1 + x 2 ) = x 1 + x 2 x σ ( 1 ) + x σ ( 2 ) = x 1 + x 2 ( σ ( 1 ) = 1  and  σ ( 2 ) = 2 )  or  ( σ ( 1 ) = 2  and  σ ( 2 ) = 1 ) σ { ( 1 2 3 4 1 2 3 4 ) , ( 1 2 3 4 1 2 4 3 ) , ( 1 2 3 4 2 1 3 4 ) , ( 1 2 3 4 2 1 4 3 ) } σ { ( ) , ( 3 4 ) , ( 1 2 ) , ( 1 2 ) ( 3 4 ) } ,

so

G x 1 + x 2 = { ( ) , ( 3 4 ) , ( 1 2 ) , ( 1 2 ) ( 3 4 ) } .

Since a stabilizer is a subgroup, V = { ( ) , ( 3 4 ) , ( 1 2 ) , ( 1 2 ) ( 3 4 ) } is a subgroup of S 4 of order 4 .

(Since all the elements of V are of order 1 or 2 , V V 4 = Z 2 × Z 2 .)

(e)
Similarly, σ G x 1 x 2 + x 3 x 4 σ ( x 1 x 2 + x 3 x 4 ) = x 1 x 2 + x 3 x 4 x σ ( 1 ) x σ ( 2 ) + x σ ( 3 ) x σ ( 4 ) = x 1 x 2 + x 3 x 4 ( x σ ( 1 ) x σ ( 2 ) = x 1 x 2  and  x σ ( 3 ) x σ ( 4 ) = x 3 x 4 )  or  ( x σ ( 1 ) x σ ( 2 ) = x 3 x 4  and  x σ ( 3 ) x σ ( 4 ) = x 1 x 2 ) σ { ( 1 2 3 4 1 2 3 4 ) , ( 1 2 3 4 1 2 4 3 ) , ( 1 2 3 4 2 1 3 4 ) , ( 1 2 3 4 2 1 4 3 ) } { ( 1 2 3 4 3 4 1 2 ) , ( 1 2 3 4 3 4 2 1 ) , ( 1 2 3 4 4 3 1 2 ) , ( 1 2 3 4 4 3 2 1 ) }

so

G x 1 x 2 + x 3 x 4 = { ( ) , ( 3 4 ) , ( 1 2 ) , ( 1 2 ) ( 3 4 ) , ( 1 3 ) ( 2 4 ) , ( 1 3 2 4 ) , ( 1 4 2 3 ) , ( 1 4 ) ( 2 3 ) } ( = W ) .

( W is a subgroup of S 4 because it is a stabilizer : we can view W as the group of symmetries of a square whose vertices are numbered 1, 3, 2, 4)

More concisely,

G x 1 x 2 + x 3 x 4 = W = ( 1 3 2 4 ) , ( 1 4 ) ( 2 3 ) .

If we put ρ = ( 1 3 2 4 ) and σ = ( 1 4 ) ( 2 3 ) , then W = ρ , σ and ρ 4 = σ 2 = e and ρσ = σ ρ 1 , so there is a surjective homomorphism

φ : D 8 = r , s r 4 = s 2 = e , rs = s r 1 W

which maps r on ρ and s on σ . Moreover | D 8 | = | W | = 8 . Therefore D 8 W .

In conclusion, G x 1 x 2 + x 3 x 4 D 8 .

(f)
Let σ be a permutation in S 4 = G . σ G ( x 1 + x 2 ) ( x 3 + x 4 ) σ ( x 1 + x 2 ) ( x 3 + x 4 ) = ( x 1 + x 2 ) ( x 3 + x 4 ) ( x σ ( 1 ) + x σ ( 2 ) ) ( x σ ( 3 ) + x σ ( 4 ) ) = ( x 1 + x 2 ) ( x 3 + x 4 ) ( x σ ( 1 ) + x σ ( 2 ) = x 1 + x 2  and  x σ ( 3 ) + x σ ( 4 ) = x 3 x 4 )  or  ( x σ ( 1 ) + x σ ( 2 ) = x 3 + x 4  and  x σ ( 3 ) + x σ ( 4 ) = x 1 + x 2 ) ( x σ ( 1 ) x σ ( 2 ) = x 1 x 2  and  x σ ( 3 ) x σ ( 4 ) = x 3 x 4 )  or  ( x σ ( 1 ) x σ ( 2 ) = x 3 x 4  and  x σ ( 3 ) x σ ( 4 ) = x 1 x 2 ) σ G x 1 x 2 + x 3 x 4 (by part (e)) .

So

G ( x 1 + x 2 ) ( x 3 + x 4 ) = G x 1 x 2 + x 3 x 4 .

User profile picture
2025-10-15 10:19
Comments