Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.2.13 (Action of $S_n$ on $\mathbb{Z}[x_1,x_2,\ldots,x_n]$)

Exercise 2.2.13 (Action of $S_n$ on $\mathbb{Z}[x_1,x_2,\ldots,x_n]$)

Let n be a positive integer and let R be the set of all polynomials with integer coefficients in the independent variables x 1 , x 2 , , x n , i.e., the members of R are finite sums of elements of the form a x 1 r 1 x 2 r 2 x n r n , where a is any integer and r 1 , , r n are nonnegative integers. For each σ S n define a map

σ : R R by σ p ( x 1 , x 2 , , x n ) = p ( x σ ( 1 ) , x σ ( 2 ) , , x σ ( n ) ) .

Prove that this defines a (left) group action of S n on R .

Answers

This is a generalization of Exercise 12 part (b).

Proof. First 1 p = p . For all σ , τ in S n , if j = τ ( i ) then σ x τ ( i ) = σ x j = x σ ( j ) = x σ ( τ ( i ) ) , therefore

σ ( τ x i ) = σ x τ ( i ) = x σ ( τ ( i ) ) = x ( στ ) ( i ) = ( στ ) ( x i ) ( i = 1 , 2 , , n ) . (1)

By definition

σ p ( x 1 , x 2 , , x n ) = p ( x σ ( 1 ) , x σ ( 1 ) , , x σ ( n ) ) ,

then

σ p ( x 1 , x 2 , , x n ) = p ( σ x 1 , σ x 2 , , σ x n ) . (2)

Therefore

σ ( τ p ) = σ ( τ p ( x 1 , x 2 , , x n ) ) = σ p ( τ x 1 , τ x 2 , , τ x n ) (by (2)) = p ( σ ( τ x 1 ) , σ ( τ x 2 ) , , σ ( τ x n ) ) (by (2)) = p ( ( στ ) x 1 , ( στ ) x 2 , , ( στ ) x n ) (by (1)) = ( στ ) p ( x 1 , x 2 , , x n ) (by (2)) = ( στ ) p .

So φ is a left action of S n on R

User profile picture
2025-10-15 10:57
Comments