Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.2.4 (Center and centralizers in $S_3, D_8$ and $Q_8$)

Exercise 2.2.4 (Center and centralizers in $S_3, D_8$ and $Q_8$)

For each of S 3 , D 8 and Q 8 compute the centralizers of each element and find the center of each group. Does Lagrange’s Theorem (Exercise 19 in Section 1.7) simplify your work?

Answers

Proof. We use the Cayley’s tables of S 3 , D 8 and Q 8 given in Exercise 1.5.2.

  • G = S 3 .

    For instance { e , τ } C G ( τ ) . By Lagrange’s Theorem, | C G ( τ ) | = 2 or 6 . But σ C G ( τ ) , because στ τσ = σ 2 τ . Hence { e , τ } = C G ( τ ) .

    Similarly { e , σ , σ 2 } C G ( σ ) , so | C G ( σ ) | = 3 or 6 . Since τ C G ( σ ) , { a , σ , σ 2 } = C G ( σ ) .

    a C G ( a )
    e S 3
    σ { e , σ , σ 2 }
    σ 2 { e , σ , σ 2 }
    τ { e , τ }
    στ { e , στ }
    σ 2 τ { e , σ 2 τ }

    The center Z is the intersection of the centralizers of the elements of S 3 , thus

    Z = a G C G ( a ) = { e } .

  • G = D 8 .

    For instance, { e , r , r 2 , r 3 } C G ( r 2 s ) , and ( r 2 s ) s = r 2 = s ( r 2 s ) , so | C G ( r 2 s ) | > 4 . By Lagrange’s Theorem, | C G ( r 2 s ) | = 6 , so C G ( r 2 s = D 8 .

    a C G ( a )
    e D 8
    r { e , r , r 2 , r 3 }
    r 2 D 8
    r 3 { e , r , r 2 , r 3 }
    s { e , s , r 2 , r 2 s }
    rs { e , rs , r 2 , r 3 s }
    r 2 s { e , s , r 2 , r 2 s }
    r 3 s { e , rs , r 2 , r 3 s }

    Hence Z = a G C G ( a ) = { e , r 2 } .

    Note: This shows that H = { e , r 2 , s , r 2 s } = { e , r 2 , s , s r 2 } = C G ( s ) = C G ( r 2 s ) and K = { e , r 2 , sr , s r 3 } = { e , r 2 , r 3 s , rs } = C G ( rs ) = C G ( r 3 s ) are subgroups of D 8 . This proves anew the results of Exercise 2.1.3.

  • G = Q 8 .

    By definition of Q 8 , we know that 1 and 1 are in the center of Q 8 , thus C G ( i ) = C G ( i ) . Since ij = k k = ji , j does not commute with i . Using Lagrange’s Theorem, this gives

    a C G ( a )
    1 Q 8
    1 Q 8
    i { 1 , 1 , i , i }
    i { 1 , 1 , i , i }
    j { 1 , 1 , j , j }
    j { 1 , 1 , j , j }
    k { 1 , 1 , k , k }
    k { 1 , 1 , k , k }

    Hence Z = { 1 , 1 } .

With Sagemath:

sage: G = PermutationGroup([[(1,2),(3,4)], [(1,2,3,4)]])
sage: list(G)
[(), (1,2)(3,4), (1,2,3,4), (1,3), (1,3)(2,4), (2,4), (1,4,3,2), (1,4)(2,3)]
sage: Z = G.center(); list(Z)
[(), (1,3)(2,4)]
sage: s, r = G([(1,2),(3,4)]), G([(1,2,3,4)])
sage: G.centralizer(r)
Subgroup of (Permutation Group with generators [(1,2)(3,4), (1,2,3,4)])
    generated by [(1,2,3,4)]
sage: list(G.centralizer(r))
[(), (1,2,3,4), (1,3)(2,4), (1,4,3,2)]

For Q 8 , use

sage: G = PermutationGroup([[(1,2,4,7),(3,6,8,5)], [(1,3,4,8),(2,5,7,6)]])

User profile picture
2025-10-11 09:37
Comments