Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.3.10 (Elements of $\langle \overline{30} \rangle \subset \mathbb{Z}/54\mathbb{Z}$ and their orders.)

Exercise 2.3.10 (Elements of $\langle \overline{30} \rangle \subset \mathbb{Z}/54\mathbb{Z}$ and their orders.)

What is the order of 30 ¯ in 54 ? Write out all the elements and their orders in 30 ¯ .

Answers

Proof. For every integer k ,

k 30 ¯ = 0 ¯ 54 30 k 9 5 k 9 k ,

because 9 5 = 1 .

This shows that the order of 30 ¯ 54 is 9 :

| 30 ¯ | = 9 .

Therefore the subgroup of 54 generated by 30 ¯ is

30 ¯ = { 0 ¯ , 30 ¯ , 2 30 ¯ , 3 30 ¯ , 4 30 ¯ , 5 30 ¯ , 6 30 ¯ , 7 30 ¯ , 8 30 ¯ } ( 9 30 ¯ = 0 ¯ ) = { 0 ¯ , 30 ¯ , 6 ¯ , 36 ¯ , 12 ¯ , 42 ¯ , 18 ¯ , 48 ¯ , 24 ¯ } .

By Proposition 5, for all integers k ,

| k 30 ¯ | = 9 k 9 .

The respective orders of 0 ¯ , 30 ¯ , 6 ¯ , 36 ¯ , 12 ¯ , 42 ¯ , 18 ¯ , 48 ¯ , 24 ¯ are 1 , 9 , 9 , 3 , 9 , 9 , 3 , 9 , 9 . □

With Sagemaths:

sage: Zn = Integers(54)
sage: a = Zn(30)
sage: a.additive_order()
9
sage: [k*a for k in range(9)]
[0, 30, 6, 36, 12, 42, 18, 48, 24]
sage: [(k*a).additive_order() for k in range(9)]
[1, 9, 9, 3, 9, 9, 3, 9, 9]

User profile picture
2025-10-18 09:13
Comments