Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.3.14 (Powers of a cycle)

Exercise 2.3.14 (Powers of a cycle)

Let σ = ( 1 2 3 4 5 6 7 8 9 10 11 12 ) . For each of the following integers a compute σ a :

a = 13 , 65 , 626 , 1195 , 6 , 81 , 570 and 1211 .

Answers

Proof. σ is a cycle of order 12 , so | σ | = 12 . Then for all integers a ,

σ a = σ r , where  a = 12 q + r , 0 r < 12 .

The remainders are

a 13 65 626 1195 -6 -81 -570 -1211
r 1 5 2 7 6 3 6 1
σ a σ 1 σ 5 σ 2 σ 7 σ 6 σ 3 σ 6 σ 1

So

σ 13 = σ = ( 1 2 3 4 5 6 7 8 9 10 11 12 ) , σ 65 = σ 5 = ( 1 6 11 4 9 2 7 12 5 10 3 8 ) , σ 626 = σ 2 = ( 1 3 5 7 9 11 ) ( 2 4 6 8 10 12 ) , σ 1195 = σ 7 = ( 1 8 3 10 5 12 7 2 9 4 11 6 ) , σ 6 = σ 6 = ( 1 7 ) ( 2 8 ) ( 3 9 ) ( 4 10 ) ( 5 11 ) ( 6 12 ) , σ 81 = σ 3 = ( 1 4 7 10 ) ( 2 5 8 11 ) ( 3 6 9 12 ) , σ 570 = σ 6 = ( 1 7 ) ( 2 8 ) ( 3 9 ) ( 4 10 ) ( 5 11 ) ( 6 12 ) , σ 1211 = σ = ( 1 2 3 4 5 6 7 8 9 10 11 12 ) .

With Sagemath:

sage: G = SymmetricGroup(12)
sage: s = G([(1,2,3,4,5,6,7,8,9,10,11,12)])
sage: s^5
(1,6,11,4,9,2,7,12,5,10,3,8)
...

User profile picture
2025-10-19 08:49
Comments