Homepage › Solution manuals › David S. Dummit › Abstract Algebra › Exercise 2.4.8 ($S_4 = \langle (1\ 2\ 3\ 4), (1\ 2\ 4\ 3) \rangle$)
Exercise 2.4.8 ($S_4 = \langle (1\ 2\ 3\ 4), (1\ 2\ 4\ 3) \rangle$)
Prove that .
Answers
Proof. It is a well-known result that (see Ex. 3.5.4 for a proof). So
Put and , and .
Then
so . Therefore
where is a subgroup of , hence .
□
Note: I found (1) with Sagemath:
sage: G = PermutationGroup([[(1,2,3,4)], [(1,2,4,3) ] ]) sage: u = G(’(1,2)’);u (1,2) sage: u.word_problem(G.gens(), False) (’x1^-1*x2^-3*x1^-1’, ’(1,2,3,4)^-1*(1,2,4,3)^-3*(1,2,3,4)^-1’) sage: s , t = G.gens()[0], G.gens()[1]; s,t ((1,2,3,4), (1,2,4,3)) sage: s^-1 * t * s^-1 (1,2)
2025-10-24 17:03