Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.4.9 (Generators of $\mathrm{SL}_2(\mathbb{F}_3)$)

Exercise 2.4.9 (Generators of $\mathrm{SL}_2(\mathbb{F}_3)$)

Prove that SL 2 ( 𝔽 3 ) is the subgroup of GL 2 ( 𝔽 3 ) generated by ( 1 1 0 1 ) and ( 1 0 1 1 ) . [Recall from Exercise 9 of Section 1 that SL 2 ( 𝔽 3 ) is the subgroup of matrices of determinant 1 . You may assume this subgroup has order 24 – this will be an exercise in Section 3.2.]

Answers

I have not found such an exercise in Section 3.2, so I prove it here.

Proof. We show first that | GL 2 ( 𝔽 3 ) | = 48 . To obtain a matrix ( a b c d ) in GL 2 ( 𝔽 3 ) , we choose first the first row ( a , b ) among the nonzero vectors of 𝔽 3 2 . There are 3 2 1 = 8 possibilities. Then we choose ( c , d ) such that ( c , d ) is not collinear to ( a , b ) . There are exactly 3 vectors λ ( a , b ) with λ 𝔽 3 , so it remains 9 3 = 6 possibilities for ( c , d ) . This gives 8 6 = 48 matrices in GL 2 ( 𝔽 3 ) , so

| GL 2 ( 𝔽 3 ) | = 48 .

Consider now the map

φ { GL 2 ( 𝔽 3 ) { 1 , 1 } A det ( A )

where { 1 , 1 } 𝔽 3 is a subgroup of 𝔽 3 Then

  • φ is a homomorphism, because φ ( AB ) = det ( AB ) = det ( A ) det ( B ) = φ ( A ) φ ( B ) .
  • φ is surjective, since det ( I 2 ) = 1 , where I 2 GL 2 ( 𝔽 3 ) , and det ( M ) = 1 , where M = ( 1 0 0 1 ) GL 2 ( 𝔽 3 ) .
  • Let A GL 2 ( 𝔽 3 ) . Then A ker ( φ ) if and only if det ( A ) = 1 , so

    ker ( φ ) = SL 2 ( 𝔽 3 ) .

The first isomorphism Theorem gives GL 2 ( 𝔽 3 ) SL 2 ( 𝔽 3 ) { 1 , 1 } , thus

| SL 2 ( 𝔽 3 ) | = | GL 2 ( 𝔽 3 ) | 2 = 24 .

Proof. (of Exercise 2.4.9.) Put

A = ( 1 1 0 1 ) , B = ( 1 0 1 1 ) .

Then A , B SL 2 ( 𝔽 3 ) have order 3 , and C = AB = ( 1 1 1 1 ) has order 4 . The list of matrices A i B j C k ( 0 i 3 , 0 j 3 , 0 k 4 ) has 36 (not distinct) items. After removing duplicates, we obtain 24 distinct matrices in SL 2 ( 𝔽 3 ) , given by

( 0 1 1 0 ) , ( 0 1 1 1 ) , ( 0 1 1 1 ) , ( 0 1 1 0 ) , ( 0 1 1 1 ) , ( 0 1 1 1 ) , ( 1 0 0 1 ) , ( 1 0 1 1 ) , ( 1 0 1 1 ) , ( 1 1 0 1 ) , ( 1 1 1 1 ) , ( 1 1 1 0 ) , ( 1 1 0 1 ) , ( 1 1 1 0 ) , ( 1 1 1 1 ) , ( 1 0 0 1 ) , ( 1 0 1 1 ) , ( 1 0 1 1 ) , ( 1 1 0 1 ) , ( 1 1 1 1 ) , ( 1 1 1 0 ) , ( 1 1 0 1 ) , ( 1 1 1 0 ) , ( 1 1 1 1 ) .

This shows that

SL 2 ( 𝔽 3 ) = A , B .

With Sagemath

sage: F = GF(3)
sage: gens = [matrix(F, 2, [1,1, 0,1]), matrix(F, 2, [1,0,1,1])]
sage: G = MatrixGroup(gens)
sage: A, B = G(gens[0]), G(gens[1])
sage: C = A * B
sage: l = [A^i*B^j*C^k for i in range(3) for j in range(3) for k in range(4)]
sage: import numpy as np
....: unique_array = np.unique(l)
....: unique_list = unique_array.tolist()
....: unique_list
....:

[
[0 1]  [0 1]  [0 1]  [0 2]  [0 2]  [0 2]  [1 0]  [1 0]  [1 0]  [1 1]
[2 0], [2 1], [2 2], [1 0], [1 1], [1 2], [0 1], [1 1], [2 1], [0 1],

[1 1]  [1 1]  [1 2]  [1 2]  [1 2]  [2 0]  [2 0]  [2 0]  [2 1]  [2 1]
[1 2], [2 0], [0 1], [1 0], [2 2], [0 2], [1 2], [2 2], [0 2], [1 1],

[2 1]  [2 2]  [2 2]  [2 2]
[2 0], [0 2], [1 0], [2 1]
]

Of course, we may obtain directly the list of elements of G by

G.list()

to obtain the same result (curiously in exactly the same order!).

User profile picture
2025-10-25 09:23
Comments