Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.5.12 (Lattice of subgroups of $Z_2\times Z_4$)

Exercise 2.5.12 (Lattice of subgroups of $Z_2\times Z_4$)

Answers

Proof. By definition, A = Z 2 × Z 4 , therefore | A | = 8 . We write Z 2 = x = { 1 , x } , and Z 4 = y = { 1 , y , y 2 , y 3 } , and we take a = ( x , 1 ) and b = ( 1 , y ) the generators of A which satisfy a 2 = b 4 = ( 1 , 1 ) = 1 A and ab = ba = ( x , y ) . Let 1 denote 1 A = ( [ 1 ] 2 , [ 1 ] 4 ) .

First a , b 2 = { 1 , a , b 2 , a b 2 } is a subgroup, and all elements in this subgroup have orders 1 or 2 : a 2 = 1 , ( b 2 ) 2 = 1 and ( a b 2 ) 2 = a 2 b 4 = 1 . Therefore (see Ex. 10)

a , b 2 Z 2 × Z 2 V 4 .

Since b 4 = 1 and b 2 = ( y 2 , 1 ) 1 , the order of b is 4 , therefore

b Z 4 .

Finally, ( ab ) 2 = a 2 b 2 = b 2 = ( 1 , y 2 ) 1 , and ( ab ) 4 = ( 1 , y 4 ) = 1 , therefore | ab | = 4 , so

ab Z 4 .

Let S be a proper subgroup of A . By Lagrange’s Theorem | S | = 1 or | S | = 2 or | S | = 4 .

If | S | = 1 , then S = { 1 } is included in any subgroup.

Since

A = { 1 , b , b 2 , b 3 , a , ab , a b 2 , a b 3 } , H = a , b 2 = { 1 , a , b 2 , a b 2 } , K = b = { 1 , b , b 2 , b 3 } , L = ab = { 1 , ab , b 2 , a b 3 } ,

then

A = a , b b ab .

Therefore every element of order 2 is in one of these 3 subgroups, thus every subgroup S of order 2 is included in one of these subgroups.

Finally, suppose that | S | = 4 . Then S is cyclic or isomorphic to V 4 . If S = h , since h H K L , then S H or S K or S L .

If S Z 2 × Z 2 , then S = h , k where | h | = | k | = 2 and h k . Since the only elements of order 2 are a , b 2 , a b 2 , the only possibilities are

{ h , k } { { a , b 2 } , { a , a b 2 } , { b 2 , a b 2 } } .

But H = a , b 2 = a , a b 2 = b 2 , a b 2 (any pair of nontrivial elements of H generates H ), so S = H .

Every proper subgroup is contained in H , K or L , which are consequently the only maximal subgroups of A .

This gives the lattice of subgroups of A :

I’m trying to learn how to use "Gap". This gives the lattice of the subgroups of Z 2 × Z 4 :

gap> K8 := Group([(1, 2), (3, 4, 5, 6)]);;  Order(K8);
8
gap> couple := GeneratorsOfGroup(K8);;
gap>  a := couple[1];; b := couple[2];;
gap>  Print("a = ",a, ", b = ", b);
a = (1,2), b = (3,4,5,6)
gap> for i in [0..1] do
>        for j in [0..3] do
>            Print("a^",i,"b^",j," = ", a^i*b^j,"\n") ;
>        od;
>     od;
a^0b^0 = ()
a^0b^1 = (3,4,5,6)
a^0b^2 = (3,5)(4,6)
a^0b^3 = (3,6,5,4)
a^1b^0 = (1,2)
a^1b^1 = (1,2)(3,4,5,6)
a^1b^2 = (1,2)(3,5)(4,6)
a^1b^3 = (1,2)(3,6,5,4)
gap> T:=Group(());;
gap> L:=IntermediateSubgroups(K8,T);;
gap> for G in L.subgroups do
>     Print(Order(G)," : ",G,"\n");
> od;
2 : Group( [ (1,2) ] )
2 : Group( [ (3,5)(4,6) ] )
2 : Group( [ (1,2)(3,5)(4,6) ] )
4 : Group( [ (3,5)(4,6), (1,2) ] )
4 : Group( [ (3,4,5,6), (3,5)(4,6) ] )
4 : Group( [ (1,2)(3,4,5,6), (3,5)(4,6) ] )
gap> Print(L.inclusions);
[ [ 0, 1 ], [ 0, 2 ], [ 0, 3 ], [ 1, 4 ], [ 2, 4 ], [ 3, 4 ], [ 2, 5 ], [ 2, 6 ],
  [ 4, 7 ], [ 5, 7 ], [ 6, 7 ] ]
  

This confirms the previous pattern.

User profile picture
2025-11-06 09:30
Comments