Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.5.18 (Centralizers of elements of $QD_{16}$)

Exercise 2.5.18 (Centralizers of elements of $QD_{16}$)

Use the lattice to help find the centralizer of every element in Q D 16 (cf. Exercise 11).

Answers

Proof. By Exercise 11, we know the lattice of subgroups of Q D 16 :

We have proved in Exercise 11 that the center of G = Q D 16 is σ 4 , so every centralizer of some element x Q D 16 contains σ 4 .

For instance, the centralizer of τ σ 3 contains τ σ 3 and σ 4 , thus contains ( τ σ 3 ) ( σ 4 ) = τ σ 7 , therefore

τ σ 7 C G ( τ σ 3 ) .

But σ 2 don’t commute with τ σ 7 : ( τ σ 7 ) σ 2 = τσ and σ 2 ( τ σ 7 ) = τ σ 6 σ 7 = τ σ 5 . Therefore C G ( τ σ 3 ) doesn’t contain σ 2 , τσ . Hence the preceding lattice shows that

τ σ 7 = C G ( τ σ 3 ) .

More generally we obtain

x 1 σ σ 2 σ 3 σ 4 σ 5 σ 6 σ 7
C G ( x ) Q D 16 σ σ σ Q D 16 σ σ σ

x τ τσ τ σ 2 τ σ 3 τ σ 4 τ σ 5 τ σ 6 τ σ 7
C G ( x ) σ 4 , τ τσ σ 4 , τ σ 2 τ σ 7 σ 4 , τ τσ σ 4 , τ σ 2 τ σ 7

With Sagemath (I am more comfortable with Sagemath than with GAP):

sage: G = SemidihedralGroup(4)
....: t, s = G.gens(); t,s
....:
((2,4)(3,7)(6,8), (1,2,3,4,5,6,7,8))
sage: s^8 ,t^2,  t * s == s^3 * t
((), (), True)
sage: def wp(x):
....:      """ for the quasidihedral group QD_16 """
....:      u, v = -1,-1
....:      for i in range(8):
....:          for j in range(2):
....:              if  s^i * t^j  == x:
....:                  u, v = i, j
....:      if u == 0:
....:          f = ""
....:      elif u == 1:
....:          f = "s"
....:      else:
....:          f = "s^{}".format(u)
....:      if v == 0:
....:          g = ""
....:      elif v == 1:
....:          g = "t"
....:      else:
....:          g = "t^{}".format(v)
....:      if u==0 and v == 0:
....:          f = ’1’
....:      return( g + f)
....:
....: print(wp(s * t))
....:
ts
sage: for g in G:
....:    print(wp(g), ’=>’)
....:    rep = ’’
....:    for h in G.centralizer(g).list():
....:        rep = rep + wp(h) + ’ ’
....:    print(rep)
....:    print
....:
(’1’, ’=>’)
                                                                  

                                                                  
1 t s ts^3 ts s^2 s^3 ts^6 ts^4 ts^2 s^4 s^6 ts^5 ts^7 s^5 s^7

(’t’, ’=>’)
1 t s^4 ts^4

(’s’, ’=>’)
1 s s^4 s^2 s^5 s^3 s^6 s^7

(’ts^3’, ’=>’)
1 ts^3 s^4 ts^7

(’ts’, ’=>’)
1 ts s^4 ts^5

(’s^2’, ’=>’)
1 s s^2 s^4 s^3 s^5 s^6 s^7

(’s^3’, ’=>’)
1 s s^3 s^4 s^2 s^5 s^7 s^6

(’ts^6’, ’=>’)
1 ts^6 s^4 ts^2

(’ts^4’, ’=>’)
1 t s^4 ts^4

(’ts^2’, ’=>’)
1 s^4 ts^2 ts^6

(’s^4’, ’=>’)
1 t s ts^3 ts s^2 s^3 ts^6 ts^4 ts^2 s^4 s^6 ts^5 ts^7 s^5 s^7

(’s^6’, ’=>’)
1 s s^4 s^6 s^2 s^5 s^7 s^3

(’ts^5’, ’=>’)
1 s^4 ts^5 ts

(’ts^7’, ’=>’)
1 s^4 ts^7 ts^3

(’s^5’, ’=>’)
1 s s^4 s^5 s^2 s^6 s^3 s^7

(’s^7’, ’=>’)
1 s s^4 s^7 s^2 s^5 s^6 s^3
                                                                  

                                                                  

This confirms the preceding results.

User profile picture
2025-11-12 10:53
Comments