Homepage › Solution manuals › David S. Dummit › Abstract Algebra › Exercise 2.5.18 (Centralizers of elements of $QD_{16}$)
Exercise 2.5.18 (Centralizers of elements of $QD_{16}$)
Use the lattice to help find the centralizer of every element in (cf. Exercise 11).
Answers
Proof. By Exercise 11, we know the lattice of subgroups of :
We have proved in Exercise 11 that the center of is , so every centralizer of some element contains .
For instance, the centralizer of contains and , thus contains , therefore
But don’t commute with : and . Therefore doesn’t contain . Hence the preceding lattice shows that
More generally we obtain
With Sagemath (I am more comfortable with Sagemath than with GAP):
sage: G = SemidihedralGroup(4)
....: t, s = G.gens(); t,s
....:
((2,4)(3,7)(6,8), (1,2,3,4,5,6,7,8))
sage: s^8 ,t^2, t * s == s^3 * t
((), (), True)
sage: def wp(x):
....: """ for the quasidihedral group QD_16 """
....: u, v = -1,-1
....: for i in range(8):
....: for j in range(2):
....: if s^i * t^j == x:
....: u, v = i, j
....: if u == 0:
....: f = ""
....: elif u == 1:
....: f = "s"
....: else:
....: f = "s^{}".format(u)
....: if v == 0:
....: g = ""
....: elif v == 1:
....: g = "t"
....: else:
....: g = "t^{}".format(v)
....: if u==0 and v == 0:
....: f = ’1’
....: return( g + f)
....:
....: print(wp(s * t))
....:
ts
sage: for g in G:
....: print(wp(g), ’=>’)
....: rep = ’’
....: for h in G.centralizer(g).list():
....: rep = rep + wp(h) + ’ ’
....: print(rep)
....: print
....:
(’1’, ’=>’)
1 t s ts^3 ts s^2 s^3 ts^6 ts^4 ts^2 s^4 s^6 ts^5 ts^7 s^5 s^7
(’t’, ’=>’)
1 t s^4 ts^4
(’s’, ’=>’)
1 s s^4 s^2 s^5 s^3 s^6 s^7
(’ts^3’, ’=>’)
1 ts^3 s^4 ts^7
(’ts’, ’=>’)
1 ts s^4 ts^5
(’s^2’, ’=>’)
1 s s^2 s^4 s^3 s^5 s^6 s^7
(’s^3’, ’=>’)
1 s s^3 s^4 s^2 s^5 s^7 s^6
(’ts^6’, ’=>’)
1 ts^6 s^4 ts^2
(’ts^4’, ’=>’)
1 t s^4 ts^4
(’ts^2’, ’=>’)
1 s^4 ts^2 ts^6
(’s^4’, ’=>’)
1 t s ts^3 ts s^2 s^3 ts^6 ts^4 ts^2 s^4 s^6 ts^5 ts^7 s^5 s^7
(’s^6’, ’=>’)
1 s s^4 s^6 s^2 s^5 s^7 s^3
(’ts^5’, ’=>’)
1 s^4 ts^5 ts
(’ts^7’, ’=>’)
1 s^4 ts^7 ts^3
(’s^5’, ’=>’)
1 s s^4 s^5 s^2 s^6 s^3 s^7
(’s^7’, ’=>’)
1 s s^4 s^7 s^2 s^5 s^6 s^3
This confirms the preceding results.