Homepage › Solution manuals › David S. Dummit › Abstract Algebra › Exercise 2.5.19 (Find $N_{D_{16}}(\langle s, r^4 \rangle)$)
Exercise 2.5.19 (Find $N_{D_{16}}(\langle s, r^4 \rangle)$)
Use the lattice to help find .
Answers
Proof. Since (Exercises 1.2.4 and 2.5.7), then commutes with , and with . Therefore . Moreover,
and of course . Therefore , so
The lattice of subgroups of (see Example 4) shows that or .
In the last case, would be a normal subgroup, but
Hence
□
With Sagemath:
sage: D16 = DihedralGroup(8); D16.order()
16
sage: [r,s] = D16.gens(); r,s
((1,2,3,4,5,6,7,8), (1,8)(2,7)(3,6)(4,5))
sage: def wp(x):
....: """ Only for Dihedral Group D_16"""
....: n = 8
....: u, v = -1,-1
....: for i in range(n):
....: for j in range(2):
....: if r^i * s^j == x:
....: u, v = i, j
....: if u == 0:
....: f = ""
....: elif u == 1:
....: f = "r"
....: else:
....: f = "r^{}".format(u)
....: if v == 0:
....: g = ""
....: elif v == 1:
....: g = "s"
....: else:
....: g = "s^{}".format(v)
....: if u==0 and v == 0:
....: f = ’1’
....: return( g + f)
....:
sage: wp(r*s) # r * s is sr in Dummit, Foote
’sr’
sage: H = D16.subgroup([s, r^4])
sage: K = D16.normalizer(H)
....: rep = ’’
....: for x in K.list():
....: rep = rep + wp(x) + ’ ’
....: print(rep)
....:
1 sr^6 r^4 s sr^2 r^6 r^2 sr^4
sage: D16.normalizer(H) == D16.subgroup([s,r^2])
True