Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.5.19 (Find $N_{D_{16}}(\langle s, r^4 \rangle)$)

Exercise 2.5.19 (Find $N_{D_{16}}(\langle s, r^4 \rangle)$)

Use the lattice to help find N D 16 ( s , r 4 ) .

Answers

Proof. Since Z ( D 16 ) = r 4 (Exercises 1.2.4 and 2.5.7), then s commutes with r 4 , and with s . Therefore s N D 16 ( s , r 4 ) . Moreover,

r 2 s r 2 = r 4 s s , r 4 ,

and of course r 2 r 4 r 2 = r 4 s , r 4 . Therefore r 2 N D 16 ( s , r 4 ) , so

s , r 2 N D 16 ( s , r 4 ) .

The lattice of subgroups of D 16 (see Example 4) shows that N D 16 ( s , r 4 ) = s , r 2 or N D 16 ( s , r 4 ) = D 16 .

In the last case, s , r 4 would be a normal subgroup, but

rs r 1 = s r 2 = s r 6 s , r 4 = { 1 , s , r 4 , s r 4 } .

Hence

N D 16 ( s , r 4 ) = s , r 2 .

With Sagemath:

sage: D16 = DihedralGroup(8); D16.order()
16
sage: [r,s] = D16.gens(); r,s
((1,2,3,4,5,6,7,8), (1,8)(2,7)(3,6)(4,5))
sage: def wp(x):
....:      """ Only for Dihedral Group D_16"""
....:      n = 8
....:      u, v = -1,-1
....:      for i in range(n):
....:          for j in range(2):
....:              if  r^i * s^j  == x:
....:                  u, v = i, j
....:      if u == 0:
....:          f = ""
....:      elif u == 1:
....:          f = "r"
....:      else:
....:          f = "r^{}".format(u)
....:      if v == 0:
....:          g = ""
....:      elif v == 1:
....:          g = "s"
....:      else:
....:          g = "s^{}".format(v)
....:      if u==0 and v == 0:
....:          f = ’1’
....:      return( g + f)
....:
sage: wp(r*s) # r * s is sr in Dummit, Foote
’sr’
sage: H = D16.subgroup([s, r^4])
sage: K = D16.normalizer(H)
....: rep = ’’
....: for x in K.list():
....:     rep = rep + wp(x) + ’ ’
....: print(rep)
....:
1 sr^6 r^4 s sr^2 r^6 r^2 sr^4
sage: D16.normalizer(H) == D16.subgroup([s,r^2])
True

User profile picture
2025-11-12 11:43
Comments