Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.5.20 ($N_{QD_{16}}(\langle \tau \sigma \rangle)$and $ N_{QD_{16}}(\langle \tau \sigma^4 \rangle)$)

Exercise 2.5.20 ($N_{QD_{16}}(\langle \tau \sigma \rangle)$and $ N_{QD_{16}}(\langle \tau \sigma^4 \rangle)$)

Use the lattice of subgroups of Q D 16 (cf. Exercise 11) to help find the normalizers

(a) N Q D 16 ( τσ ) (b) N Q D 16 ( τ σ 4 ) .

Answers

Proof. We have proved in Exercise 11 that Z ( Q D 16 ) = σ 4 . The lattice of subgroups of Q D 16 is given by

(a)
Note that τσ N Q D 16 ( τσ ) . Moreover σ 2 ( τσ ) σ 2 = σ 2 τ σ 1 = τ σ 6 σ 1 = τ σ 5 = ( τσ ) σ 4 τσ ,

because σ 4 τσ and τσ τσ . This shows that

σ 2 , τσ N Q D 16 ( τσ ) .

The preceding lattice shows that N Q D 16 ( τσ ) = σ 2 , τσ or N Q D 16 ( τσ ) = Q D 16 .

But

σ ( τσ ) σ 1 = στ = τ σ 3 τσ = { 1 , τσ , σ 4 , τ σ 3 } ,

so N Q D 16 ( τσ ) Q D 16 . This proves

N Q D 16 ( τσ ) = σ 2 , τσ .

(b)
Since σ 4 is in the center of Q D 16 , then σ 4 N Q D 16 ( τ σ 4 ) . Moreover τ ( τ σ 4 ) τ 1 = σ 4 τ = τ σ 4

so

σ 4 , τ N Q D 16 ( τ σ 4 ) .

But

σ 2 ( τ σ 4 ) σ 2 = σ 2 τ σ 2 = τ σ 6 σ 2 = τ τ σ 4 = { 1 , τ σ 4 } .

This shows that σ 2 , τ N Q D 16 ( τ σ 4 ) . The preceding lattice shows that

N Q D 16 ( τ σ 4 ) = σ 4 , τ .

With Sagemath, we add to the instructions given in the note of Exercise 18 the following instructions

sage: H = G.subgroup([s * t])
....: K = G.normalizer(H)
....: w = ’’
....: for h in K:
....:     w = w + wp(h) + ’ ’
....: print(w)
....:
1 ts^3 ts s^4 s^6 ts^7 ts^5 s^2
sage: G.normalizer(H)== G.subgroup([s * t, s^2])
True
sage: L = G.subgroup([s^4 * t])
....: M = G.normalizer(L)
....: w = ’’
....: for h in M:
....:     w = w + wp(h) + ’ ’
....: print(w)
....:
1 t s^4 ts^4
sage: G.normalizer(L) == G.subgroup([s^4, t])
True

This confirms the results of (a) and (b).

User profile picture
2025-11-12 12:48
Comments