Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.5.4 (Find all pairs of elements that generate $D_8$)

Exercise 2.5.4 (Find all pairs of elements that generate $D_8$)

Use the given lattice to find all pairs of elements that generate D 8 (there are 12 pairs).

Answers

Proof. In the lattice of subgroups of D 8 we see for instance that the upper limit of r and r 3 s is D 8 , so D 8 = r , r 3 s , but s , r 2 D 8 . Reasoning with each pair, we obtain the twelve pairs generating D 8 :

D 8 = r , s = r , r 3 s = rs , s = rs , r = rs , r 2 s = rs , r 3 = r 2 s , r = r 2 s , r 3 = r 2 s , r 3 s = r 3 , s = r 3 s , s = r 3 s , r 3 .

With Sagemath:

sage: D8 = DihedralGroup(4); D8.list()
[(), (1,4)(2,3), (1,2,3,4), (1,3)(2,4), (1,3), (2,4), (1,4,3,2), (1,2)(3,4)]
sage: [r,s] = D8.gens(); r, s
((1,2,3,4), (1,4)(2,3))
sage: def my_word_problem(x, n):
....:      """ Only for Dihedral Group D_2n"""
....:      u, v = -1,-1
....:      for i in range(n):
....:          for j in range(2):
....:              if   s^j * r^i    == x:
....:                  u, v = i, j
....:      if u == 0:
....:          f = ""
....:      elif u == 1:
....:          f = "r"
....:      else:
....:          f = "r^{}".format(u)
....:      if v == 0:
....:          g = ""
....:      elif v == 1:
....:          g = "s"
....:      else:
....:          g = "s^{}".format(v)
....:      if u==0 and v == 0:
....:          f = ’1’
....:      return( f + g)
....:
sage: my_word_problem(r * s, 4)       # r * s is sr in Dummit & Foote
’r^3s’
sage: for a,b in liste:
....:     print(my_word_problem(a, 4),my_word_problem(b, 4))
....:
(’r’, ’s’)
(’r’, ’r^3s’)
(’r^3s’, ’s’)
(’r^3s’, ’r^3’)
(’rs’, ’s’)
(’rs’, ’r’)
(’rs’, ’r^3’)
(’rs’, ’r^2s’)
(’r^3’, ’s’)
                                                                  

                                                                  
(’r^2s’, ’r’)
(’r^2s’, ’r^3s’)
(’r^2s’, ’r^3’)

User profile picture
2025-11-02 09:46
Comments