Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.5.5 (Find all elements $x \in D_{16}$ such that $D_{16} = \langle x ,s \rangle$)

Exercise 2.5.5 (Find all elements $x \in D_{16}$ such that $D_{16} = \langle x ,s \rangle$)

Use the given lattice to find all elements x D 16 such that D 16 = x , s (there are 8 (*) such elements x )

(*) Obvious misprint in D.F., which write “ 16 such elements x ” even though D 16 has 16 elements.

Answers

Proof. We must be cautious, because the lattice deals with groups, and not elements.

First we read on this lattice that the upper limit of s and r is D 8 . Moreover r = r 3 = r 5 = r 7 , because n 8 = 1 n { 1 , 3 , 5 , 7 } . Hence

D 8 = r , s = r 3 , s = r 5 , s = r 7 , s .

(But if k is even r k , s s , r 2 D 16 .)

Now we test the elements s r k , 0 k < 8 . We read on the diagram that the upper limit of s with s r 3 (or with s r 7 , s r 5 , sr ) is D 8 , so

D 8 = s r 3 , s , s r 7 , s , s r 5 , s , sr , s .

(But if k is even s r k , s s , r 2 .)

This gives exactly 8 elements x such that D 16 = x , s :

D 16 = r , s = r 3 , s = r 5 , s = r 7 , s = s r 3 , s , s r 7 , s , s r 5 , s , sr , s .

With Sagemath:

sage: D16 = DihedralGroup(8); D16.order()
16
sage: [r,s] = D16.gens(); r,s
((1,2,3,4,5,6,7,8), (1,8)(2,7)(3,6)(4,5))
sage: def my_word_problem(x, n):
....:      """ Only for Dihedral Group D_2n"""
....:      u, v = -1,-1
....:      for i in range(n):
....:          for j in range(2):
....:              if  r^i * s^j  == x:
....:                  u, v = i, j
....:      if u == 0:
....:          f = ""
....:      elif u == 1:
....:          f = "r"
....:      else:
....:          f = "r^{}".format(u)
....:      if v == 0:
....:          g = ""
....:      elif v == 1:
....:          g = "s"
....:      else:
....:          g = "s^{}".format(v)
....:      if u==0 and v == 0:
....:          f = ’1’
....:      return( g + f)
....:
sage: my_word_problem(r*s, 8) #r * s is sr in Dummit, Foote
’sr’
sage: liste = []
....: for x in D16:
....:      if D16.subgroup([x,s]).order() == 16:
....:          liste.append(x)
....: liste
....:

[(1,2,3,4,5,6,7,8),
 (1,7)(2,6)(3,5),
 (2,8)(3,7)(4,6),
 (1,4,7,2,5,8,3,6),
 (1,8,7,6,5,4,3,2),
                                                                  

                                                                  
 (1,5)(2,4)(6,8),
 (1,3)(4,8)(5,7),
 (1,6,3,8,5,2,7,4)]
sage: for x in liste:
....:     print(my_word_problem(x, 8))
....:
r
sr
sr^7
r^3
r^7
sr^3
sr^5
r^5

User profile picture
2025-11-02 09:50
Comments