Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 2.5.6 (Centralizers of every element in $D_8$, $Q_8$, $S_3$, $D_{16}$)

Exercise 2.5.6 (Centralizers of every element in $D_8$, $Q_8$, $S_3$, $D_{16}$)

Use the given lattices to help to find the centralizers of every element in the following groups:

(a) D 8 (b) Q 8 (c) S 3 (d) D 16 .

Answers

Proof. Centralizers of every element in D 8 , Q 8 , S 3 , D 16 .

(a)
G = D 8 .

For instance, The centralizer C D 8 ( s ) contains s and r 2 , so contains s , r 2 Since r C D 8 ( s ) , we obtain

s , r 2 C D 8 ( s ) < D 8 .

Then the diagram (4) shows that

C D 8 ( s ) = s , r 2 .

More generally, we obtain the following array

x 1 r r 2 r 3 s rs r 2 s r 3 s
C G ( x ) D 8 r D 8 r s , r 2 rs , r 2 s , r 2 rs , r 2
(b)
G = Q 8 .

Similarly

x 1 i j k 1 i j k
C G ( x ) Q 8 i j k Q 8 i j k
(c)
G = S 3 .

x () ( 1 2 ) ( 1 3 ) ( 2 3 ) ( 1 2 3 ) ( 1 3 2 )
C G ( x ) S 3 ( 1 2 ) ( 1 3 ) ( 2 3 ) ( 1 2 3 ) ( 1 2 3 )
(d)
G = D 16 .

x 1 r r 2 r 3 r 4 r 5 r 6 r 7
C G ( x ) D 16 r r r D 16 r r r

x s sr s r 2 s r 3 s r 4 s r 5 s r 6 s r 7
C G ( x ) s , r 4 sr , r 4 s r 2 , r 4 s r 3 , r 4 s , r 4 sr , r 4 s r 2 , r 4 s r 3 , r 4

With Sagemath:

sage: D8 = DihedralGroup(4); D8.order()
8
sage: [r,s] = D8.gens(); r, s
((1,2,3,4), (1,4)(2,3))
sage: D8.centralizer(s).list()
[(), (1,3)(2,4), (1,4)(2,3), (1,2)(3,4)]
sage: D8.subgroup([s,r^2]).list()
[(), (1,3)(2,4), (1,4)(2,3), (1,2)(3,4)]

User profile picture
2025-11-02 09:53
Comments