Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.1.13 (Homomorphism $r \mapsto e^{4\pi i r}$)

Exercise 3.1.13 (Homomorphism $r \mapsto e^{4\pi i r}$)

Repeat the preceding exercise with the map φ replaced by the map φ : r e 4 πir .

Answers

Proof. Since

e ix = 1 k , x = 2 ,

Equivalently, for all real r ,

e 4 πir = 1 k , r = k 2 r 1 2 . (1)

If φ : G H is the homomorphism φ = r e 4 πir , then by (1)

ker ( φ ) = 1 2

is the set of half integers.

If z 0 = e 4 πi r 0 ( r 0 ), we obtain

r φ 1 ( z 0 ) e 4 πir = e 4 πi r 0 e 4 πi ( r r 0 ) = 1 r r 0 1 2 r r 0 + 1 2 ,

so

φ 1 ( { e 4 r 0 } ) = r 0 + 1 2 .

Since 1 = e = e 4 ( 1 4 ) , i = e 2 = e 4 ( 1 8 ) , e 4 3 = e 4 ( 1 3 ) , this gives the fibers

φ 1 ( { 1 } ) = 1 4 + 1 2 , φ 1 ( { i } ) = 1 8 + 1 2 , φ 1 ( { e 4 3 } ) = 1 3 + 1 2 .
User profile picture
2025-11-15 09:32
Comments