Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.1.8 (Image and fibers of $\varphi : \mathbb{R}^\times \to \mathbb{R}^\times$ defined by $\varphi(x) = |x|$)

Exercise 3.1.8 (Image and fibers of $\varphi : \mathbb{R}^\times \to \mathbb{R}^\times$ defined by $\varphi(x) = |x|$)

Let φ : × × be the map sending x to the absolute value of x . Prove that φ is a homomorphism and find the image of φ . Describe the kernel and the fibers of φ .

Answers

Proof. For all x , y ,

φ ( xy ) = | xy | = | x | | y | = φ ( x ) φ ( y ) ,

so φ is a homomorphism.

For all x 0 , φ ( x ) = | x | > 0 , so im ( φ ) + × .

Conversely, if x R + × , then x = | x | = φ ( x ) , so x im ( φ ) . This shows the inclusion R + × im ( φ ) , so

im ( φ ) = + × = { x x > 0 } .

For all x × ,

φ ( x ) = 1 | x | = 1 x { 1 , 1 } ,

so

ker ( φ ) = { 1 , 1 } .

Similarly,

φ ( x ) = a | x | = a x { a , a } ,

so the fibers of φ are the sets

φ 1 ( a ) = { a , a } .

User profile picture
2025-11-14 09:31
Comments