Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.1.9 (Homorphism $\varphi : \mathbb{C}^\times \to \mathbb{R}^\times$ defined by $\varphi(a +bi) = a^2 + b^2$)

Exercise 3.1.9 (Homorphism $\varphi : \mathbb{C}^\times \to \mathbb{R}^\times$ defined by $\varphi(a +bi) = a^2 + b^2$)

Define φ : × × by φ ( a + bi ) = a 2 + b 2 . Prove that φ is a homomorphism and find the image of φ . Describe the kernel and the fibers of φ geometrically (as subsets of the plane).

Answers

Proof.

Note first that if a + bi × , then ( a , b ) ( 0 , 0 ) , thus a 2 + b 2 × so φ : × × is well defined.

If z = a + bi , where a , b , then

φ ( z ) = a 2 + b 2 = ( a + bi ) ( a bi ) = z z ¯ .

Note that if z = a + bi , t = c + di , ( a , b , c , d ) are complex numbers, then

z ¯ t ¯ = ( a + bi ) ¯ ( c + di ) ¯ = ( a bi ) ( c di ) = ac bd i ( bc + ad ) = ac bd + i ( bc + ad ) ¯ = ( a + bi ) ( c + di ) ¯ = zt ¯ .

(So the map defined by z z ¯ is an automorphism of the group × .)

Therefore, for all z , t ×

φ ( zt ) = zt zt ¯ = zt z ¯ t ¯ = z z ¯ t t ¯ = φ ( z ) φ ( t ) ,

so φ : × × is a homomorphism.

If c im ( φ ) , then c = φ ( a + bi ) = a 2 + b 2 > 0 for some reals a , b , so c + × .

Conversely, if c + × , then c = ( c ) 2 + 0 2 = φ ( c + 0 i ) , where ( c , 0 ) 2 , so c im ( φ ) . So

im ( φ ) = + × .

For every a im ( φ ) = + × , the fiber above a is

φ 1 ( a ) = { x + iy × x 2 + y 2 = a } ,

corresponds in the Euclidean plane 2 to the circle with center ( 0 , 0 ) and radius a .

In particular, ker ( φ ) is the subgroup 𝕌 corresponding in the plane to the circle with center ( 0 , 0 ) and radius 1 . □

User profile picture
2025-11-14 10:06
Comments