Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.5.4 ($S_n = \langle (1 \ 2), (1\ 2\ 3\ \ldots \ n) \rangle$)

Exercise 3.5.4 ($S_n = \langle (1 \ 2), (1\ 2\ 3\ \ldots \ n) \rangle$)

Show that S n = ( 1 2 ) , ( 1 2 3 n ) .

Answers

We can use the following lemma:

Lemma. if ( a 1 a 2 a k ) is a cycle of S n , and σ S n , then

σ ( a 1 a 2 a k ) σ 1 = ( σ ( a 1 ) σ ( a 2 ) σ ( a k ) ) .

Proof. (of lemma) Put γ = ( a 1 a 2 a k ) , and δ = ( σ ( a 1 ) σ ( a 2 ) σ ( a k ) ) .

  • If 1 i < k , then

    ( σγ σ 1 ) ( σ ( a i ) ) = σ ( γ ( a i ) ) = σ ( a i + 1 ) = δ ( σ ( a i ) ) .

  • If i = k , then

    ( σγ σ 1 ) ( σ ( a k ) ) = σ ( γ ( a k ) ) = σ ( a 1 ) = δ ( σ ( a k ) ) .

  • Finally, if x { σ ( a 1 ) , , σ ( a k ) } , then σ 1 ( x ) { a 1 , , a k } , therefore γ ( σ 1 ( x ) ) = σ 1 ( x ) , so

    ( σγ σ 1 ) ( x ) = x .

This shows that σγ σ 1 = δ , so

σ ( a 1 a 2 a k ) σ 1 = ( σ ( a 1 ) σ ( a 2 ) σ ( a k ) ) .

Proof. (of Ex. 3.5.4)

We have proved in Exercise 3 that

S n = ( 1 2 ) , ( 2 3 ) , , ( n 1 n ) .

Put τ = ( 1 2 ) and σ = ( 1 2 . . . n ) .

Let us apply the Lemma to τ and σ k 1 , 1 k < n :

σ k 1 τ σ ( k 1 ) = σ k 1 ( 1 2 ) σ ( k 1 ) = ( σ k 1 ( 1 ) σ k 1 ( 2 ) ) = ( k k + 1 ) .

Therefore σ , τ ( 1 2 ) , ( 2 3 ) , , ( n 1 n ) = S n , where σ , τ S n , so σ , τ = S n .

S n = ( 1 2 ) , ( 1 2 n ) .

User profile picture
2025-10-24 17:00
Comments