Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.1.35 ($\mathrm{GL}_n(F)/ \mathrm{SL}_n(F) \simeq F^\times.$)

Exercise 3.1.35 ($\mathrm{GL}_n(F)/ \mathrm{SL}_n(F) \simeq F^\times.$)

Prove that SL n ( F ) GL n ( F ) and describe the isomorphism type of the quotient group (cf. Exercise 9, Section 2.1).

Answers

Proof. By Exercise 2.1.9, we know that SL n ( F ) GL n ( F ) .

Consider the map

φ { GL n ( F ) F × A det ( A ) .

  • For all A , B GL n ( F ) ,

    φ ( 𝐴𝐵 ) = det ( 𝐴𝐵 ) = det ( A ) det ( B ) = φ ( A ) φ ( B ) ,

    so φ is an homomorphism.

  • ker ( φ ) = SL n ( F ) : For all A GL n ( F ) ,

    A ker ( φ ) det ( A ) = 1 A SL n ( F ) .

    This shows that

    SL n ( F ) GL n ( F )

    since SL n ( F ) is the kernel of a homomorphism.

  • φ is surjective: If a F × , then the matrix A = diag ( a , 1 , 1 , , 1 ) GL n ( F ) , and det ( A ) = a , so φ ( A ) = a .

The First Isomorphism Theorem (Theorem 16, Section 3.3) shows that

GL n ( F ) SL n ( F ) F × .

Note: If we don’t know the future First Isomorphism Theorem, we show that

ψ { GL n ( F ) SL n ( F ) F × A ¯ det ( A ) .

is well defined, and is an isomorphism.

User profile picture
2025-12-05 21:50
Comments