Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.2.14 ( $S_4$ does not have a normal subgroup of order $8$ or a normal subgroup of order $3$)

Exercise 3.2.14 ( $S_4$ does not have a normal subgroup of order $8$ or a normal subgroup of order $3$)

Warning: I use the results on Sylow Theorems (Section 4.5).

Proof. Since | S 4 | : 4 ! = 24 = 2 3 3 , a subgroup of order 8 is a 2 -Sylow subgroup of S 4 . The number n 2 of 2 -Sylow satisfies by Theorem 18 p.139

n 2 1 ( 𝑚𝑜𝑑 2 ) , n 2 3 ,

so n 2 = 1 or n 2 = 3 .

By Exercise 13, we know a subgroup of order 8 , isomorphic to D 8 , given by

H = ( 1 2 3 4 ) , ( 1 2 ) ( 3 4 ) = { ( ) , ( 1 2 3 4 ) , ( 1 4 ) ( 2 3 ) , ( 1 3 ) ( 2 4 ) , ( 1 3 ) , ( 2 4 ) , ( 1 4 3 2 ) , ( 1 2 ) ( 3 4 ) } .

But a different numbering of the vertices of the square gives another subgroup K H , by exchanging 3 and 4 , given by

K = ( 1 2 4 3 ) , ( 1 2 ) ( 3 4 ) = { ( ) , ( 1 2 4 3 ) , ( 1 3 ) ( 2 4 ) , ( 1 4 ) ( 2 3 ) , ( 1 4 ) , ( 2 3 ) , ( 1 3 4 2 ) , ( 1 2 ) ( 3 4 ) } .

Therefore n 2 > 1 , so n 2 = 3 . This shows that there are only three subgroups of order 8 .

(The third subgroup of order 8 is

L = ( 1 3 2 4 ) , ( 1 3 ) ( 2 4 ) = { ( ) , ( 3 , 4 ) , ( 1 , 2 ) , ( 1 , 2 ) ( 3 , 4 ) , ( 1 , 3 ) ( 2 , 4 ) , ( 1 , 3 , 2 , 4 ) , ( 1 , 4 , 2 , 3 ) , ( 1 , 4 ) ( 2 , 3 ) } . )

By Theorem 18 and Corollary 20 of Section 4.5 (or direct computation), these three subgroups are conjugate and are not normal in S 4 .

Consider now a subgroup A of order 3 . Since 3 is prime, A is cyclic. The only elements of order 3 in S 4 are 3 -cycles, therefore

A = ( a b c ) ,

where a , b , c are three distinct elements among { 1 , 2 , 3 , 4 } so there are exactly 4 subgroups of order 3 :

A 1 = ( 1 2 3 ) , A 2 = ( 1 2 4 ) , A 3 = ( 1 3 4 ) , A 4 = ( 2 3 4 ) .

These four subgroups are distinct, and conjugate: if σ = ( a b c d a b c d ) , then

σ ( a b c ) σ 1 = ( σ ( a ) σ ( b ) σ ( c ) ) = ( a b c ) .

For instance ( 3 4 ) ( 1 2 3 ) ( 3 4 ) 1 = ( 1 2 4 ) , therefore A 1 and A 2 are conjugate subgroups. This shows that A 1 , A 2 , A 3 , A 4 are not normal subgroups.

In conclusion, S 4 does not have a normal subgroup of order 8 or a normal subgroup of order 3 . □

With GAP:

gap> S4:=SymmetricGroup(4);;
gap> T := Subgroup(S4,[]);;
gap> L:=IntermediateSubgroups(S4,T).subgroups;;
gap> for G in L do
>     Print(Order(G)," : ",G,"\t", IsNormal(S4,G),"\n");
> od;
2 : Group( [ (1,3)(2,4) ] ) false
2 : Group( [ (1,4)(2,3) ] ) false
2 : Group( [ (1,2)(3,4) ] ) false
2 : Group( [ (3,4) ] ) false
2 : Group( [ (2,4) ] ) false
2 : Group( [ (2,3) ] ) false
2 : Group( [ (1,4) ] ) false
2 : Group( [ (1,3) ] ) false
2 : Group( [ (1,2) ] ) false
3 : Group( [ (2,4,3) ] ) false
3 : Group( [ (1,3,2) ] ) false
3 : Group( [ (1,3,4) ] ) false
3 : Group( [ (1,4,2) ] ) false
4 : Group( [ (1,4)(2,3), (1,3)(2,4) ] ) true
4 : Group( [ (3,4), (1,2)(3,4) ] ) false
4 : Group( [ (2,4), (1,3)(2,4) ] ) false
4 : Group( [ (2,3), (1,4)(2,3) ] ) false
4 : Group( [ (1,3,2,4), (1,2)(3,4) ] ) false
4 : Group( [ (1,2,3,4), (1,3)(2,4) ] ) false
4 : Group( [ (1,2,4,3), (1,4)(2,3) ] ) false
6 : Group( [ (3,4), (2,4,3) ] ) false
6 : Group( [ (1,3), (1,3,2) ] ) false
6 : Group( [ (1,3), (1,3,4) ] ) false
6 : Group( [ (1,4), (1,4,2) ] ) false
8 : Group( [ (1,4)(2,3), (1,3)(2,4), (3,4) ] ) false
8 : Group( [ (1,4)(2,3), (1,2)(3,4), (2,4) ] ) false
8 : Group( [ (1,3)(2,4), (1,2)(3,4), (2,3) ] ) false
12 : Group( [ (1,4)(2,3), (1,3)(2,4), (2,4,3) ] ) true