Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.3.1 (${|\mathrm{GL}_n(F) : \mathrm{SL}_n(F)| = q-1}$)

Exercise 3.3.1 (${|\mathrm{GL}_n(F) : \mathrm{SL}_n(F)| = q-1}$)

Let F be a finite field of order q and let n + . Prove that | GL n ( F ) : SL n ( F ) | = q 1 . [See Exercise 35, Section 1.]

Answers

Proof. Consider the map

φ { GL n ( F ) F × A det ( A ) .

(If A GL n ( F ) , then det ( A ) 0 , so det ( A ) F × .)

Then

  • φ is a homomorphism: If A , B GL n ( F ) , then

    φ ( 𝐴𝐵 ) = det ( 𝐴𝐵 ) = det ( A ) det ( B ) = φ ( A ) φ ( B ) .

  • φ is surjective: If λ F × , then F = det ( A ) , where A = diag ( λ , 1 , 1 , , 1 ) GL n ( F ) . So

    φ ( GL n ( F ) ) = F × .

  • ker ( φ ) = SL n ( F ) :

    A ker ( φ ) φ ( A ) = 1 det ( A ) = 1 A SL n ( F ) .

By the First Isomorphism Theorem,

GL n ( F ) SL n ( F ) F × .

Since the cardinality of F is q , | GL n ( F ) SL n ( F ) | = q 1 , so

| GL n ( F ) : SL n ( F ) | = q 1 .

User profile picture
2025-12-06 17:06
Comments