Homepage Solution manuals David S. Dummit Abstract Algebra Exercise 3.3.4 ( $(A \times B)/(C \times D) \simeq (A/C) \times (B/D)$)

Exercise 3.3.4 ( $(A \times B)/(C \times D) \simeq (A/C) \times (B/D)$)

Let C be a normal subgroup of the group A and let D be a normal subgroup of the group B . Prove that ( C × D ) ( A × B ) and ( A × B ) ( C × D ) ( A C ) × ( B D ) .

Answers

Proof.

Let ( a , b ) A × B , and ( c , d ) C × D . Since C A and D B

( a , b ) ( c , d ) ( a , b ) 1 = ( 𝑎𝑐 a 1 , 𝑏𝑑 b 1 ) C × D ,

so

C × D A × B .

Let π 1 : A A C and π 2 : B B D be the natural projections, i.e., π 1 ( a ) = 𝑎𝐶 for any a A and π 2 ( b ) = 𝑏𝐷 for any b B .

Consider the map

φ { A × B ( A C ) × ( B D ) ( a , b ) ( π 1 ( a ) , π 2 ( b ) ) .

Then

  • φ is a homomorphism: If ( a , b ) A × B and ( a , b ) A × B , then

    φ ( ( a , b ) ( a , b ) ) = φ ( a a , b b ) = ( a a C , b b D ) φ ( a , b ) φ ( a , b ) = ( 𝑎𝐶 , 𝑏𝐷 ) ( a C , b D ) = ( 𝑎𝐶 a C , 𝑏𝐷 b D ) = ( a a C , b b D ) ,

    so φ ( ( a , b ) ( a , b ) ) = φ ( a , b ) φ ( c , d ) . Then φ is a homomorphism.

  • φ is surjective. If ( a ¯ , b ¯ ) ( A C ) × ( C D ) , then a ¯ = 𝑎𝐶 and b ¯ = 𝑏𝐷 for some a A and some b B , because π 1 and π 2 are surjective. Therefore ( a ¯ , b ¯ ) = ( π 1 ( a ) , π 2 ( b ) ) = φ ( a , b ) , so φ is surjective, and

    φ ( A × B ) = ( A C ) × ( B D ) .

  • ker ( φ ) = C × D : if ( a , b ) A × B ,

    ( a , b ) ker ( φ ) φ ( a , b ) = ( 1 A C , 1 B D ) π 1 ( a ) = 1 A B  and  π 2 ( b ) = 1 C D a ker ( π 1 )  and  b ker ( π 2 ) a C  and  b D ( a , b ) C × D ,

    so

    ker ( φ ) = C × D .

By the First Isomorphism Theorem, ( A × B ) ker ( φ ) φ ( A × B ) , so

( A × B ) ( C × D ) ( A C ) × ( B D ) .

User profile picture
2025-12-06 17:15
Comments