Exercise 1.11.11

Answers

  • Equation (21), it satisfies |A| > 0, |cA| = |c||A|. Also, |A + B||A| + |B|.

For |AB| = largest L1 norm of the rows of AB, we have

(AB)i,j = kaikbkj, so for the l1 norm of row i, we have $|(AB){i,}| = j| k a{ik}b{kj}|≤∑ jk |a{ik}b{kj}|≤∑ jk |a{ik}||b{kj}| = ∑ k |a{ik}|∑ j |b{kj}| = ∑ k |a{ik}||B{k,}| = |A_{i,}||B_{k,}|≤|A|{∞}|B|{∞}$So |AB| = max|(AB)i,|≤ max|A||B| = |A||B| 

 
User profile picture
2020-03-20 00:00
Comments