Exercise 2.1.2

Answers

For matrix D, we have di,i = 1 for i = 1,,n and di,i1 = 1 for i = 2,,n. For matrix D1, we have di,j = 1 if i j, otherwise di,j = 0.

For the product, M = DD1, we have Mi,j = kdi,kdk,j1 = di,idi,j1 + di,i1di1,j1 = di,j1 di1,j1

  • If i < j, we have Mi,j = 0 0 = 0

  • If i = j, we have Mi,j = 1 0 = 1,

  • If $i j+1$,wehaveMi,j = 1 − 1 = 0

So M = I = DD1.

If n = 4, we have D1 = [1000 1 1 0 0 1110 1 1 1 1 ] so (D1)T = [1111 0 1 1 1 0011 0 0 0 1 ]

Then (DDT)1 = (D1)TD1 = [4321 3 3 2 1 2221 1 1 1 1 ]

User profile picture
2020-03-20 00:00
Comments