Exercise 2.1.3

Answers

Problem 1 says that A = DDT + eeT, where e = (1,0,,0). From secition III.1 we have A1 = (DDT)1 zzT.

We see that AA1 = (DDT + eeT)((DDT)1 zzT) = I DDTzzT + eeT(DDT)1 eeTzzT For n = 3, we have DDT = [ 1 1 0 1 2 1 0 1 2 ], and (DDT)1 = [321 2 2 1 111 ], eeT = [100 0 0 0 000 ], let z = (z1,z2,z3), we have

DDTzzT = [ z1(z1 z2) z2(z1 z2) z3(z1 z2) z1(2z2 z1 z3)z2(2z2 z1 z3)z3(2z2 z1 z3) z1(2z3 z2) z2(2z3 z2) z3(2z3 z2) ]

eeT(DDT)1 = [321 0 0 0 000 ]

eeTzzT = [z12z1z2z1z3 0 0 0 0 0 0 ]

So we have z3(2z3 z2) = 0, z3(2z2 z1 z3) = 0, and z1(z1 z2) + 3 z12 = 0 we see that z = (3 2,1, 1 2) can be a solution here.

So rank-1 change in DDT produces rank-1 change in its inverse.

User profile picture
2020-03-20 00:00
Comments