Exercise 2.1.4

Answers

Check matrix M = (S + 2I)1ST.

  • For n = 2, we have S = [00 1 0 ], ST = [01 0 0 ], S+2I = [ 2 0 1 2 ], so (S+2I)1 = [1 20 1 41 2 ] and $M=(-S+2I){-1}ST =

    [1 20 1 41 2 ] [ 01 0 0 ]

    =

    [01 2 01 4 ]

    $. The matrix M has eigenvalues λ1 = 0,λ2 = 1 4.

  • For n = 3, we have S = [000 1 0 0 010 ], ST = [010 0 0 1 000 ], S +2I = [ 2 0 0 1 2 0 0 12 ], so (S +2I)1 = [1 200 1 41 20 1 81 41 2 ] and $M=(-S+2I){-1}ST =

    [1 200 1 41 20 1 81 41 2 ] [ 010 0 0 1 000 ]

    =

    [01 20 01 41 2 01 81 4 ]

    $. The matrix M has eigenvalues λ1 = 0,λ2,3 = 1 4.

User profile picture
2020-03-20 00:00
Comments