Exercise 3.5.1

Answers

  • Let A0 = [12 a b ], let λ1,λ2 be the eigenvalues of A0TA0 = [1 + a22 + ab 2 + ab4 + b2 ] , so we have λ1 + λ2 = 1 + a2 + 4 + b2 = 5 + a2 + b2 and λ1λ2 = (1 + a2)(4 + b2) (2 + ab)2 = (2a b)2.
    The singular values of A0 are thus

    sigma1 = λ1,σ2 = λ2
    A0N2 = (σ 1+σ2)2 = σ 12+σ 22+2σ 1σ2 = λ1+λ2+2λ1 λ2 = 5+a2+b2+2(2a b)2 = 5+a2+b2+2|2ab|

    This equals to (a + 2)2 + (b 1)2 when 2a b > 0 and (a 2)2 + (b + 1)2 when 2a b <= 0

    They achieve minimum of 5 when a = b = 0, so

    A0 = [12 0 0 ] minimizes A0N

  • Let B0 = [1a b 4 ], let λ1,λ2 be the eigenvalues of B0TB0 = [1 + b2 a + 4b a + 4b16 + a2 ] , so we have λ1 + λ2 = 1 + b2 + 16 + a2 = 17 + a2 + b2 and λ1λ2 = (1 + b2)(16 + a2) (a + 4b)2 = (ab 4)2.

    B0N2 = (σ 1+σ2)2 = σ 12+σ 22+2σ 1σ2 = λ1+λ2+2λ1 λ2 = 17+a2+b2+2(ab 4)2 = a2+b2+2|ab4|+17

    This equals to (a + b)2 + 9 when ab > 4 and $(a-b)^2 + 25 $ when ab <= 4. The second achieves minimal of 25 when a = b = 0. We want to check whether there are a,b that can make the first one less than 25 when ab > 4, so we check (a + b)2 + 9 < 25, and we find it requires (b 2)2 < 0 or (b + 2)2 < 0, which is impossible. But on the boundary, we see that a = b = 2 or a = b = 2 also achieves the same minimum 25.

    So B0 = [1a a 4 ] minimizes B0N, where a = 0,2,2.

  • Let C0 = [12 3 a ], let λ1,λ2 be the eigenvalues of C0TC0 = [ 10 2 + 3a 2 + 3a4 + a2 ] , so we have λ1 + λ2 = 14 + a2 and λ1λ2 = 10(4 + a2) (2 + 3a)2 = (a 6)2.

    C0N2 = (σ 1+σ2)2 = σ 12+σ 22+2σ 1σ2 = λ1+λ2+2λ1 λ2 = 14+a2+2(a 6)2 = 14+a2+2|a6|

    .

    Take derivative w.r.t. a, we find a = 1, so C0 = [12 3 1 ] minimizes C0N

User profile picture
2020-03-20 00:00
Comments