Exercise 4.10.3

Answers

D = [0111 1 0 1 1 1101 1 1 1 0 ]and d1 = [0 1 1 1 ], according to equation (4), we have G = [0000 011 21 2 01 211 2 01 21 21 ]

The points lie in R3 here.

We solve the X using eigenvalue/eigenvectors of G as below.

#G= np.array([[0, 0, 0, 0], [0, 1, 0.5, 0.5], [0, 0.5, 1, 0.5], [0, 0.5, 0.5, 1]]) 
# Since numpy.linalg.eig() doesn’t return orthogonal eigenvector matrix, so we use cholesky here 
G= np.array([[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]) 
L = np.linalg.cholesky(G) 
X = L.transpose() 
print(ThefinalX:\n, X)
The final X:
 [[1.         0.5        0.5       ]
 [0.         0.8660254  0.28867513]
 [0.         0.         0.81649658]]
    

1/np.sqrt(7)
0.3779644730092272

User profile picture
2020-03-20 00:00
Comments