Homepage › Solution manuals › Gilbert Strang › Linear Algebra and Learning from Data › Exercise 4.10.3
Exercise 4.10.3
Answers
and , according to equation (4), we have
The points lie in here.
We solve the using eigenvalue/eigenvectors of as below.
#G= np.array([[0, 0, 0, 0], [0, 1, 0.5, 0.5], [0, 0.5, 1, 0.5], [0, 0.5, 0.5, 1]]) # Since numpy.linalg.eig() doesn’t return orthogonal eigenvector matrix, so we use cholesky here G= np.array([[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]) L = np.linalg.cholesky(G) X = L.transpose() print(’The␣final␣X:␣\n’, X)
The final X: [[1. 0.5 0.5 ] [0. 0.8660254 0.28867513] [0. 0. 0.81649658]]
1/np.sqrt(7)
0.3779644730092272
2020-03-20 00:00