Exercise 4.5.2

Answers

F(λ) = λ2, then equation (3) gives the limit of the average eigenvalue of A2.

  • 1.
    A(𝜃) = a1ei𝜃 + a0 + a1ei𝜃, A2(𝜃) = a12e2i𝜃 + 2a0a1ei𝜃 + (a02 + 2a1a1) + 2a0a1ei𝜃 + a12e2i𝜃

On the other hand, for A2 = AA, we have the Aii2 = kaikaki = ai,i1ai1,i+ai,iai,i+ai,i+1ai+1,i = a1a1+a02+a1a1 = a02+2a1a1

Similarly we have Ai,i+12 = kaikak,i+1 = ai,i1ai1,i+1+ai,iai,i+1+ai,i+1ai+1,i+1 = a1×0+a0a1+a1a0 = 2a0a1

Ai,i+22 = kaikak,i+2 = ai,i1ai1,i+2+ai,iai,i+2+ai,i+1ai+1,i+2 = a1×0+a0×0+a1a1 = a12

So we see that A2 symbol is (A(𝜃))2.

  • 1.
    02πA2(𝜃)d𝜃 =02π (a12e2i𝜃 + 2a0a1ei𝜃 + (a02 + 2a1a1) + 2a0a1ei𝜃 + a12e2i𝜃) d𝜃 =02π (e2i𝜃 4ei𝜃 + 6 4ei𝜃 + e2i𝜃) d𝜃 =02π(6+2cos (2𝜃)+8cos (𝜃)d𝜃 = 12π
User profile picture
2020-03-20 00:00
Comments