Exercise 5.3.8

Answers

When t x1, P(x > t) = 1, if x1 < t < x2, P(x > t) = 1 p1, if xi < t < xi+1, then P(x > t) = 1 k=1ipk

t=0P(x > t)dt =t=0x1 P(x > t)dt +x1x2 P(x > t)dt + +xixi+1 P(x > t)dt + +xnP(x > t)dt = 1x1 + (1 p1)(x2 x1) + + (1 k=1i1p k)(xi xi1) + (1 k=1ip k)(xi+1 xi) + + pn(xn xn1) + 0 = p1x1 + p2x2 + + pnxn = i=1np ixi = E[x]
User profile picture
2020-03-20 00:00
Comments