Exercise 5.5.4

Answers

  • (xm1)2p(x,y)dxdy =(x22m1x+m12)p(x)p(y)dxdy =xx2p(x)yp(y)dydx2m1xxp(x)yp(y)dydx+m12p(x,y)dxdy =xx2p(x)dx2m1xxp(x)dx+m12 =xx2p(x)dx2m1xxp(x)dx+xm12p(x)dx =x(xm1)2p(x)dx = σ12
  • (xm1)(ym2)p(x,y)dxdy =xyp(x,y)dxdym2xp(x,y)dxdym1yp(x,y)dxdy+m1m2p(x,y)dxdy =xxp(x)yyp(y)dydxm2m1m1m2+m1m2 = m1m2m1m2 = 0
User profile picture
2020-03-20 00:00
Comments