Homepage › Solution manuals › Gilbert Strang › Linear Algebra and Learning from Data › Exercise 5.6.6
Exercise 5.6.6
Answers
We have the matrix , it has the eigenvector that corresponds to eigenvalue of 1: , which says .
Everyone dies in the end.
import numpy as np x = np.array([[1, 1], [1, -1]]) b = np.array([[1, 0], [0, 0]]) a = np.array([[2, 1, 1], [1, 2, 1], [1, 1, 2]])/4 #r = np.matmul(b, np.matmul(a, np.linalg.inv(b))) #np.linalg.norm(r), r xi = np.linalg.inv(x) np.matmul(x, np.matmul(b, xi)) np.linalg.eig(a), #x, print(xi)
((array([0.25, 1. , 0.25]), array([[-0.81649658, 0.57735027, 0.381008 ], [ 0.40824829, 0.57735027, -0.81590361], [ 0.40824829, 0.57735027, 0.43489561]])),)
x = 2.5 (x+4/x)/2
2.05
2020-03-20 00:00