Exercise 7.1.1

Answers

For the original function, F = ReLU(x) + ReLU(y) + ReLU(z), we have 8 linear pieces, i.e. 

1.
F = x + y + z, where x > 0,y > 0,z > 0
  • F = x + y, where x > 0,y > 0,z < 0
  • F = x + z, where x > 0,y < 0,z > 0
  • F = x, where x > 0,y < 0,z < 0
  • F = y + z, where x < 0,y > 0,z > 0
  • F = y, where x < 0,y > 0,z < 0
  • F = z, where x < 0,y < 0,z > 0
  • F = 0, where x < 0,y < 0,z < 0

If we add the 4th fold of ReLU(x + y + z), its fold plane is x + y + z = 0, for this fold plane to cut the original pieces, it requires solution for the fold plane in each piece. It’s clear to see that no solution exists for the first (x > 0,y > 0,z > 0) and last piece (x < 0,y < 0,z < 0). The new fold plane doesn’t cut through them. So there are a total of 2 × 6 + 2 = 14 pieces.

The 14 pieces are:

1.
F = 2x + 2y + 2z, where x > 0,y > 0,z > 0
  • F = 2x + 2y + z, where x > 0,y > 0,z < 0,x + y + z > 0
  • F = x + y, where x > 0,y > 0,z < 0,x + y + z < 0
  • F = 2x + y + 2z, where x > 0,y < 0,z > 0,x + y + z > 0
  • F = x + z, where x > 0,y < 0,z > 0,x + y + z < 0
  • F = 2x + y + z, where x > 0,y < 0,z < 0,x + y + z > 0
  • F = x, where x > 0,y < 0,z < 0,x + y + z < 0
  • F = x + 2y + 2z, where x < 0,y > 0,z > 0,x + y + z > 0
  • F = y + z, where x < 0,y > 0,z > 0,x + y + z < 0
  • F = x + 2y + z, where x < 0,y > 0,z < 0,x + y + z > 0
  • F = y, where x < 0,y > 0,z < 0,x + y + z < 0
  • F = x + y + 2z, where x < 0,y < 0,z > 0,x + y + z > 0
  • F = z, where x < 0,y < 0,z > 0,x + y + z < 0
  • F = 0, where x < 0,y < 0,z < 0
User profile picture
2020-03-20 00:00
Comments