Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.2.12 (If $(a,4) = 2$ and $(b,4) =2$, then $(a+b,4) = 4$. )

Exercise 1.2.12 (If $(a,4) = 2$ and $(b,4) =2$, then $(a+b,4) = 4$. )

Given that ( a , 4 ) = 2 and ( b , 4 ) = 2 , prove that ( a + b , 4 ) = 4 .

Answers

Proof. Assume that ( a , 4 ) = 2 . Every a is of the form 4 k + r , 0 r < 4 . Moreover ( 4 k , 4 ) = 4 , ( 4 k + 1 , 4 ) = ( 1 , 4 ) = 1 , ( 4 k + 3 , 4 ) = ( 3 , 4 ) = 1 . This shows that

a = 4 k + 2 , k .

Similarly, if ( b , 4 ) = 2 , then b = 4 l + 2 for some l .

Then a + b = 4 ( k + l ) + 4 , so 4 a + b . This proves ( a + b , 4 ) = 4 . □

User profile picture
2024-06-16 15:32
Comments