Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.2.24 (No integers $x,y$ exist satisfying $x + y = 100$ and $(x,y) = 3$)

Exercise 1.2.24 (No integers $x,y$ exist satisfying $x + y = 100$ and $(x,y) = 3$)

Prove that no integers x , y exist satisfying x + y = 100 and ( x , y ) = 3 .

Answers

Proof. Assume for contradiction that x + y = 100 and ( x , y ) = 3 . Then 3 x and 3 y , so 3 x + y = 100 . But 3 100 . This contradiction shows that no integers x , y exist satisfying x + y = 100 and ( x , y ) = 3 . □

User profile picture
2024-09-28 09:55
Comments