Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.2.26 (Solvability of $x + y = s, \ x \wedge y = g$)

Exercise 1.2.26 (Solvability of $x + y = s, \ x \wedge y = g$)

Let s and g > 0 be given integers. Prove that integers x and y exist satisfying x + y = s and ( x , y ) = g if and on y if g s .

Answers

Proof.

  • If integers x and y exist satisfying x + y = s and ( x , y ) = g , then g x , g y , thus g x + y , so g s .
  • Conversely, assume that g s . Then (Theorem 1.9 and Problem 18),

    g ( s g ) = g s = g .

    Therefore x = s g and y = g satisfy x + y = s , x y = g .

User profile picture
2024-09-28 10:21
Comments