Exercise 1.2.32 ($n- 1 \mid n^k - 1 \iff n - 1 \mid k.$)

Let n 2 and k be any positive integers. Prove that ( n 1 ) 2 ( n k 1 ) if and only if ( n 1 ) k .

Answers

Proof. Since n 1 ( mod n 1 ) ,

( n 1 ) 2 n k 1 n 1 n k 1 n 1 = j = 0 k 1 n j j = 0 k 1 n j 0 ( mod n 1 ) k 0 ( mod n 1 ) n 1 k .

So

( n 1 ) 2 n k 1 n 1 k .

(If we want to write this proof without congruences, we replace n j bt ( 1 + ( n 1 ) ) j in the sum.) □

User profile picture
2024-09-29 09:46
Comments