Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.2.37 ($(a_1,a_2,\ldots,a_n) = ((a_1,a_2,\ldots,a_{n-1}),a_n)$)

Exercise 1.2.37 ($(a_1,a_2,\ldots,a_n) = ((a_1,a_2,\ldots,a_{n-1}),a_n)$)

Prove that ( a 1 , a 2 , , a n ) = ( ( a 1 , a 2 , , a n 1 ) , a n ) .

Answers

Proof. Let d = a 1 a 2 a n , and δ = ( a 1 a 2 a n 1 ) a n .

Then d a 1 , , d a n 1 , thus d a 1 a 2 a n 1 . Moreover, d a n , therefore d ( a 1 a 2 a n 1 ) a n = δ .

On the other hand, δ a 1 a 2 a n 1 , thus δ a 1 , δ a 2 , , δ a n 1 . Moreover, δ a n , therefore δ a 1 a 2 a n = d .

From d δ and δ d , where d 0 , δ 0 , we deduce d = δ , so

a 1 a 2 a n = ( a 1 a 2 a n 1 ) a n .

User profile picture
2024-09-30 09:27
Comments