Exercise 1.2.50* (Value of $(a+b, a^2 -ab + b^2)$)

Show that if ( a , b ) = 1 then ( a + b , a 2 ab + b 2 ) = 1 or 3 .

Answers

Proof. Write d = a + b a 2 ab + b 2 .

Then d a + b and d a 2 ab + b 2 . Therefore b a ( mod d ) . Hence

0 a 2 ab + b 2 a 2 a ( a ) + ( a ) 2 = 3 a 2 ( mod d ) ,

so

{ d a + b , d 3 a 2 .

By hypothesis, a b = 1 , thus a a + b = 1 , and a 2 a + b = 1 .

Since d a + b , then d a 2 = 1 (for every integer c , if c d and c a 2 , then c a + b , so c a 2 a + b = 1 ).

From d 3 a 2 and d a 2 = 1 , we deduce d 3 , where d 0 .

This shows that d = 1 or d = 3 . □

User profile picture
2024-06-17 14:00
Comments