Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.3.13 (If $(a,b) = p$, what are the possible values of $(a^2,b)$?)

Exercise 1.3.13 (If $(a,b) = p$, what are the possible values of $(a^2,b)$?)

If ( a , b ) = p , a prime, what are the possible values of ( a 2 , b ) ? Of ( a 3 , b ) ? Of ( a 2 , b 3 ) ?

Answers

Proof. We denote ν p ( a ) the largest exponent α such that p α a .

Since a b = p , ν q ( a ) = ν q ( b ) = 0 if q prime, q p (thus ν q ( a k ) = ν q ( b k ) = 0 , and

ν p ( a ) = 1  and  ν p ( b ) 1 ( case 1) ,  or  ν p ( a ) 1  and  ν p ( b ) = 1 (case 2) .
(a)
  • Case 1. ν p ( a 2 ) = 2 and ν p ( b ) 1 , thus a b = p or a b = p 2 .
  • Case 2. ν p ( a 2 ) 2 and ν p ( b ) = 1 , thus a b = p .

The possible values of a 2 b are p , p 2 .

(b)
  • Case 1. ν p ( a 3 ) = 3 and ν p ( b ) 1 , thus a 3 b = p , p 2 or p 3 .
  • Case 2. ν p ( a 3 ) 3 and ν p ( b ) = 1 , thus a 3 b = p .

The possible values of a 3 b are p , p 2 , p 3 .

(c)
  • Case 1. ν p ( a 2 ) = 2 and ν p ( b 3 ) 3 , thus a 2 b 3 = p 2 .
  • Case 2. ν p ( a 2 ) 2 and ν p ( b 3 ) = 3 , thus a 2 b 3 = p 2 or p 3 .

The possible values of a 2 b 3 are p 2 , p 3 .

User profile picture
2024-10-03 11:03
Comments