Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.3.14 (Evaluate $(ab, p^4)$ and $(a+b, p^4)$, if $(a, p^2) = p$ and $(b,p^3) = p^2$)

Exercise 1.3.14 (Evaluate $(ab, p^4)$ and $(a+b, p^4)$, if $(a, p^2) = p$ and $(b,p^3) = p^2$)

Evaluate ( ab , p 4 ) and ( a + b , p 4 ) given that ( a , p 2 ) = p and ( b , p 3 ) = p 2 where p is a prime.

Answers

Proof. Given that a p 2 = p and b p 3 = p 2 , we obtain

a = pu , u p = 1 , b = p 2 v , v p = 1 .

Then ab = p 3 w , where w = uv is prime to p . Therefore

ab p 4 = p 3 w p 4 = p 3 ( w p ) = p 3 ,

so

ab p 4 = p 3 .

Now a + b = pu + p 2 v = p ( u + pv ) = ps , where s = u + pv . Moreover

s p = ( u + pv ) p = u p = 1 .

Therefore s p 3 = 1 . Then ( a + b ) p 4 = ps p 4 = p ( s p 3 ) = p . So

( a + b ) p 4 = p .

User profile picture
2024-10-04 08:13
Comments