Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.3.18 ($a\wedge b = c$ implies $a^2 \wedge b^2 = c^2$)

Exercise 1.3.18 ($a\wedge b = c$ implies $a^2 \wedge b^2 = c^2$)

Prove that ( a 2 , b 2 ) = c 2 if ( a , b ) = c .

Answers

Proof. Let a , b , c be positive integers. Write

a = p A p α ( p ) , b = p A p β ( p ) , c = p A p γ ( p ) .

(We can take the same set A , if we put α ( p ) 0 , β ( p ) 0 , γ ( p ) 0 .)

Suppose that a b = c . Then γ ( p ) = min ( α ( p ) , β ( p ) ) (see (1.7)).

Hence, using (1.7) anew,

a 2 b 2 = p A p min ( 2 α ( p ) , 2 β ( p ) ) = p A p 2 min ( α ( p ) , β ( p ) ) = p A p 2 γ ( p ) = ( p A p γ ( p ) ) 2 = c 2 .

So

a b = c a 2 b 2 = c 2 .

User profile picture
2024-10-05 07:02
Comments