Exercise 1.3.21 ($[a,b,c](ab,bc,ca) = |abc|$)

Prove that [ a , b , c ] ( ab , bc , ca ) = | abc | .

Answers

Proof. Let a , b , c be integers.

  • Suppose first that a , b , c are positive integers. We may write

    a = p A p α ( p ) , b = p A p β ( p ) , c = p A p γ ( p ) ,

    where 0 α ( p ) , 0 β ( p ) , 0 γ ( p ) .

    Then

    ( a b c ) ( ab bc ca ) = p A p max ( α ( p ) , β ( p ) , γ ( p ) ) + min ( α ( p ) + β ( p ) , β ( p ) + γ ( p ) , γ ( p ) + α ( p ) ) .

    For any integers u , v , w ,

    max ( u , v , w ) + min ( u + v , v + w , w + u ) = u + v + w .

    Indeed, we may assume without loss of generality that u v w . Then u + v v + w , u + v w + u , thus min ( u + v , v + w , w + u ) = u + v , and

    max ( u , v , w ) + min ( u + v , v + w , w + u ) = w + ( u + v ) = u + v + w .

    (Same result for the six permutations of u , v , w .)

    Therefore

    ( a b c ) ( ab bc ca ) = p A p α ( p ) + β ( p ) + γ ( p ) = abc .
  • If a = 0 or b = 0 or c = 0 , then a b c = 0 , thus ( a b c ) ( ab bc ca ) = 0 = | abc | .
  • Suppose now that a , b , c . Then a b c = | a | | b | | c | and ab bc ca = | ab | | bc | | ca | , thus

    ( a b c ) ( ab bc ca ) = ( | a | | b | | c ) ( | a | | b | | b | | c | | c | | a | ) = | a | | b | | c | = | abc | .

For all ( a , b , c ) 3 ,

( a b c ) ( ab bc ca ) = | abc | .

User profile picture
2024-10-05 08:35
Comments