Homepage Solution manuals Ivan Niven An Introduction to the Theory of Numbers Exercise 1.3.23 (If $ad -bc = \pm 1, u = am + bn, v = cm + dn$, then $(m,n) = (u,v)$)

Exercise 1.3.23 (If $ad -bc = \pm 1, u = am + bn, v = cm + dn$, then $(m,n) = (u,v)$)

Given integers a , b , c , d , m , n , u , v satisfying ad bc = ± 1 , u = am + bn , v = cm + dn , prove that ( m , n ) = ( u , v ) .

Answers

Proof. From

{ u = am + bn , v = cm + dn , (1)

we deduce

{ du bv = ( ad bc ) m , cu + bv = ( ad bc ) n .

Since ad bc = 𝜀 = ± 1 ,

{ m = 𝜀du 𝜀bv , n = 𝜀cu + 𝜀bv (2)

For any integer d , if d m and d n , then (1) shows that d u and d v , thus d u v . In particular m n u v .

For any integer d , if d u and d v , then (2) shows that d m and d n , thus d m n . In particular u v m n .

Since m n u v and u v m n , where u v 0 , m n , we obtain

m n = u v .

User profile picture
2024-10-05 10:24
Comments