Homepage › Solution manuals › Ivan Niven › An Introduction to the Theory of Numbers › Exercise 1.3.30 ($n^2 - 81 n + 1681$ is a prime for $n = 1,2,3,\ldots,80$, but not for $n = 81$)
Exercise 1.3.30 ($n^2 - 81 n + 1681$ is a prime for $n = 1,2,3,\ldots,80$, but not for $n = 81$)
Prove that is a prime for , but not for .
Answers
Proof. Let . Then , thus is composite.
For , we obtain with sage
sage: for n in range(1,82):
....: print(n, n^2 - 81*n + 1681, is_prime(n^2 - 81*n + 1681))
....:
(1, 1601, True)
(2, 1523, True)
(3, 1447, True)
(4, 1373, True)
(5, 1301, True)
(6, 1231, True)
(7, 1163, True)
(8, 1097, True)
(9, 1033, True)
(10, 971, True)
(11, 911, True)
(12, 853, True)
(13, 797, True)
(14, 743, True)
(15, 691, True)
(16, 641, True)
(17, 593, True)
(18, 547, True)
(19, 503, True)
(20, 461, True)
(21, 421, True)
(22, 383, True)
(23, 347, True)
(24, 313, True)
(25, 281, True)
(26, 251, True)
(27, 223, True)
(28, 197, True)
(29, 173, True)
(30, 151, True)
(31, 131, True)
(32, 113, True)
(33, 97, True)
(34, 83, True)
(35, 71, True)
(36, 61, True)
(37, 53, True)
(38, 47, True)
(39, 43, True)
(40, 41, True)
(41, 41, True)
(42, 43, True)
(43, 47, True)
(44, 53, True)
(45, 61, True)
(46, 71, True)
(47, 83, True)
(48, 97, True)
(49, 113, True)
(50, 131, True)
(51, 151, True)
(52, 173, True)
(53, 197, True)
(54, 223, True)
(55, 251, True)
(56, 281, True)
(57, 313, True)
(58, 347, True)
(59, 383, True)
(60, 421, True)
(61, 461, True)
(62, 503, True)
(63, 547, True)
(64, 593, True)
(65, 641, True)
(66, 691, True)
(67, 743, True)
(68, 797, True)
(69, 853, True)
(70, 911, True)
(71, 971, True)
(72, 1033, True)
(73, 1097, True)
(74, 1163, True)
(75, 1231, True)
(76, 1301, True)
(77, 1373, True)
(78, 1447, True)
(79, 1523, True)
(80, 1601, True)
(81, 1681, False)
Thus is prime for . □
2024-10-07 07:45