Exercise 1.3.33 ($n^4 + n^2 + 1$ is composite)

Show that n 4 + n 2 + 1 is composite if n > 1 .

Answers

Proof. Let N = n 4 + n 2 + 1 , where n > 1 . Then

N = n 4 + n 2 + 1 = ( n 4 + 2 n 2 + 1 ) n 2 = ( n 2 + 1 ) 2 n 2 = ( n 2 n + 1 ) ( n 2 + n + 1 ) .

Moreover n 2 n + 1 = n ( n 1 ) + 1 > 1 if n > 1 . A fortiori n 2 + n + 1 > 1 . This shows that

N = ( n 2 n + 1 ) ( n 2 + n + 1 )

is composite if n > 1 . □

User profile picture
2024-06-20 08:53
Comments